首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
农作物   8篇
水产渔业   1篇
畜牧兽医   3篇
  2015年   1篇
  2014年   5篇
  2011年   1篇
  2009年   2篇
  2007年   1篇
  2004年   1篇
  2003年   1篇
排序方式: 共有12条查询结果,搜索用时 312 毫秒
1.
2.
Suitable and practicable best management practices (BMPs) need to be developed due to steadily increasing agricultural land development, intensified fertilization practices, and increased soil erosion and pollutant loads from cultivated areas. The soil and water assessment tool model was used to evaluate the present and future proper BMP scenarios for Chungju dam watershed (6,642 km2) of South Korea, which includes rice paddy and upland crop areas. The present (1981–2010) and future (2040s and 2080s) BMPs of streambank stabilization, building recharge structures, conservation tillage, and terrace and contour farming were examined individually in terms of reducing nonpoint source pollution loads by applying MIROC3.2 HiRes A1B and B1 scenarios. Streambank stabilization achieved the highest reductions in sediment and T-N, and slope terracing was a highly effective BMP for sediment and T-P removal in both present and future climate conditions.  相似文献   
3.
This study examined the capability of remotely sensed information gained using the terra moderate resolution imaging spectroradiometer (MODIS) normalized difference vegetation index (NDVI) and land surface temperature (LST) to explain forest soil moisture. The soil and water assessment tool (SWAT) was used for the analysis. Nine years (2000–2008) of monthly MODIS NDVI and LST data from a 2,694.4 km2 watershed consisting of forest-dominant areas in South Korea were compared with SWAT simulated soil moisture. Before the analysis, the SWAT model was calibrated and verified using 9 years of daily streamflow at three gauging stations and 6 years (2003–2008) of daily measured soil moisture at three locations within the watershed. The average Nash–Sutcliffe model efficiency during the streamflow calibration and validation was 0.72 and 0.70, respectively. The SWAT soil moisture showed a higher correlation with MODIS LST during the forest leaf growing period (March–June) and with MODIS NDVI during the leaf falling period (September–December). Low correlation was observed in the year of frequent rains, regardless of the leaf periods.  相似文献   
4.
Paddy and Water Environment - In this study, a potential system for achieving rice intensification (SRI) water management in an agricultural watershed of South Korea was evaluated using the...  相似文献   
5.
A grid-based, KIneMatic wave STOrm Runoff Model (KIMSTORM) is described. The model adopts the single flow-path algorithm and routes the water balance during the storm period. Manning’s roughness coefficient adjustment function of the paddy cell was applied to simulate the flood mitigation effect of the paddy fields for the grid-based, distributed rainfall-runoff modeling. The model was tested in 2296 km2 dam watershed in South Korea using six typhoon storm events occurring between 2000 and 2007 with 500 m spatial resolution, and the results were tested through the automatic model evaluation functions in the model. The average values of the Nash–Sutcliffe model efficiency (ME), the volume conservation index (VCI), the relative error of peak runoff rate (EQp), and the absolute error of peak runoff (ETp) were 0.974, 1.016, 0.019, and 0.45 h for calibrated storm events and 0.975, 0.951, 0.029, and 0.50 h for verified storm events, respectively. In the simulation of the flood mitigation effect of the paddy fields, the average values of the percentage changes for peak runoff, total runoff volume, and time to peak runoff were only −1.95, −0.93, and 0.19%, respectively.  相似文献   
6.
7.
This study evaluated the impact on watershed hydrology by predicting future forest community change under a climate change scenario. The Soil and Water Assessment Tool (SWAT) was selected and applied to Chungju dam watershed (6,642 km2) of South Korea. The SWAT was calibrated and validated for 6 years (1998–2003) using the daily streamflow data from three locations. For the future evaluation of forest community and hydrology, the MIROC3.2 HiRes monthly climate data were adopted. The future data were corrected using 30 years (1977–2006, baseline period) of measured weather data, and they were daily downscaled by the Long Ashton Research Station-Weather Generator statistical method. To predict the future forest vegetation cover, the baseline forest community was modeled by a multinomial LOGIT model using variables of baseline precipitation, temperature, elevation, degree of base saturation, and soil organic matter, and the future forest community was predicted using the future precipitation and temperature scenario. The future temperature increase of 4.8 °C by 2080s (2070–2099) led to prediction of 30.8 % decrease of mixed forest and 75.8 % increase of coniferous forest compared to the baseline forest community. For the baseline evapotranspiration (ET) of 491.5 mm/year, the 2080s ET under the forest community change was 591.1 mm/year, whereas it was 551.8 mm/year with the remaining forest community stationary. The different ET results considering the future forest community clearly affected the groundwater recharge and streamflow in sequence.  相似文献   
8.
Highly pathogenic avian influenza viruses (HPAIV) of the H5N1 subtype have spread since 2003 in poultry and wild birds in Asia, Europe and Africa. In Korea, the highly pathogenic H5N1 avian influenza outbreaks took place in 2003/2004, 2006/2007 and 2008. As the 2006/2007 isolates differ phylogenetically from the 2003/2004 isolates, we assessed the clinical responses of chickens, ducks and quails to intranasal inoculation of the 2006/2007 index case virus, A/chicken/Korea/IS/06. All the chickens and quails died on 3 days and 3-6 days post-inoculation (DPI), respectively, whilst the ducks only showed signs of mild depression. The uninoculated chickens and quails placed soon after with the inoculated flock died on 5.3 and 7.5 DPI, respectively. Both oropharyngeal and cloacal swabs were taken for all three species during various time intervals after inoculation. It was found that oropharyngeal swabs showed higher viral titers than in cloacal swabs applicable to all three avian species. The chickens and quails shed the virus until they died (up to 3 to 6 days after inoculation, respectively) whilst the ducks shed the virus on 2-4 DPI. The postmortem tissues collected from the chickens and quails on day 3 and days 4-5 and from clinically normal ducks that were euthanized on day 4 contained the virus. However, the ducks had significantly lower viral titers than the chickens or quails. Thus, the three avian species varied significantly in their clinical signs, mortality, tissue virus titers, and duration of virus shedding. Our observations suggest that duck and quail farms should be monitored particularly closely for the presence of HPAIV so that further virus transmission to other avian or mammalian hosts can be prevented.  相似文献   
9.
The simulated streamflow from Thiessen average rainfall (T) and spatially distributed rainfall (R) may be significantly different from each other. To identify the hydrologic effects quantitatively, the grid-based kinematic wave storm runoff model was adopted. The model predicts temporal and spatial variations of surface and subsurface flow at each cell by calculating the water balance, and routes the streamflow to the outlet. The model was tested at the Yeoncheondam watershed (1,875 km2), one third of which belongs to North Korea. The watershed is elongated to north and south directions crossing the border. Four rain gauges cover the watershed within the territory of South Korea, while no records from North Korea are given. The simulated results showed the large differences in runoff volume and peak flow rates between T and R when rain moves in a north to south direction. The simulated results of east-to-west-direction storms showed little difference in the hydrographs. The hydrograph was strongly affected by the spatial variations of the rainfall moving along the stream of the watershed.  相似文献   
10.
This study is to assess the climate change impact on the temporal variation of paddy rice irrigation reservoir water level from the future evaluated watershed inflow, and to suggest an adaptation method of the future reservoir water level management for stable water supply of paddy irrigation demands. A 366.5 km2 watershed including two irrigation reservoirs located in the upper middle part of South Korea was adopted. For the future evaluation, the SLURP model was set up using 9 years daily reservoir water level and streamflow records at the watershed outlet. The average Nash-Sutcliffe model efficiencies for calibration and validation were 0.69 and 0.65, respectively. For the future climate condition, the NIES MIROC3.2 hires data by SRES A1B and B1 scenarios of the IPCC was adopted. The future data were downscaled by applying Change Factor statistical method through bias-correction using 30 years past weather data. The results of future impact showed that the future reservoir storages of autumn and winter season after completion of irrigation period decreased for 2080s A1B scenario. Considering the future decrease of summer and autumn reservoir inflows, the reservoir operation has to be more conservative for preparing the water supply of paddy irrigation, and there should be a more prudent decision making for the reservoir release by storm events. Therefore, as the future adaptation strategy, the control of reservoir release by decreasing in August and September could secure the reservoir water level in autumn and winter season by reaching the water level to almost 100% like the present reservoir water level management.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号