首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   1篇
畜牧兽医   2篇
  2019年   1篇
  2018年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
The introduction of biogas plants is a promising way to recycle organic wastes with renewable energy production and reducing greenhouse gas. Application of anaerobic digestate as a fertilizer reduces the consumption of chemical fertilizers. In this study, the survival of pathogenic bacteria and plant growth promoting bacteria (PGPB) in two full‐scale biogas plants operated at mesophilic condition were investigated. Feedstock and anaerobic digestate samples were collected from biogas plants and bacteria load in samples were detected using standard dilution plate method. Pathogenic bacteria were reduced to not detected level through mesophilic digestion tank except for Campylobacter. However, it could be reduced by 98.7% through a sterilization tank. Bacillus was detected at 8.00 and 7.81 log10 CFU/g dry matter in anaerobic digestates, and it was also resistant to sterilization tank. Bacillus spp. is considered to be the safe bacteria that hold remarkable abilities for promoting plant growth. The results showed that treatment at biogas plants is effective to reduce pathogenic bacteria in dairy manure, and sterilization could further reduce the sanitary risks of pathogenic bacteria relating to anaerobic digestate application. Anaerobic digestates could also be utilized as bio‐fertilizer as the high load of plant growth promoting bacteria.  相似文献   
2.
Frequent use of pesticides to control soil‐borne plant disease leads to environmental pollution and the development of pesticide resistance in phytopathogens. Soil amendment is considered to have the potential of suppressing plant disease because of its biological properties. However, information on anaerobic digestate is limited. In this study, potential of antagonistic activities of anaerobic digestate against phytopathogens were investigated by detecting the amounts of antagonistic bacteria (Bacillus and Pseudomonas) in anaerobic digestates of dairy manure. The results showed that anaerobic digestion increased the total amounts of Bacillus and Pseudomonas in digestate. Bacillus suppressed growth of phytopathogens, while Pseudomonas did not show any antagonistic activities. These results indicated that Bacillus was an effective antagonistic bacterium in digestate against phytopathogens. Furthermore, two selected isolates, B11 (Bacillus subtilis) and B59 (Bacillus licheniformis), were applied in field experiments and showed significant reduction in percent infection of potato late blight (Phytophthora infestans). These results demonstrate the benefits of digestate in suppressing soil‐borne plant diseases caused by antagonistic bacteria.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号