首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   1篇
农作物   1篇
畜牧兽医   7篇
植物保护   1篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2013年   1篇
  2010年   1篇
  2005年   2篇
  1984年   1篇
排序方式: 共有9条查询结果,搜索用时 19 毫秒
1
1.
(Co)variance components, direct and maternal breed additive, dominance, and epistatic loss effects on preweaning weight gain of beef cattle were estimated. Data were from 478,466 animals in Ontario, Canada, from 1986 to 1999, including records of both purebred and crossbred animals from Angus, Blonde d'Aquitaine, Charolais, Gelbvieh, Hereford, Limousin, Maine-Anjou, Salers, Shorthorn, and Simmental breeds. The genetic model included fixed direct and maternal breed additive, dominance, and epistatic loss effects, fixed environmental effects of age of the calf, contemporary group, and age of the dam x sex of the calf, random additive direct and maternal genetic effects, and random maternal permanent environment effects. Estimates of direct and maternal additive genetic, maternal permanent environmental and residual variances, expressed as proportions of the phenotypic variance, were 0.32, 0.20, 0.12, and 0.52, respectively. Correlation between direct and maternal additive genetic effects was -0.63. Breed ranking was similar to previous studies, but estimates showed large SE. The favorable effects of direct and maternal dominance (P < 0.05) on preweaning gain were equivalent to 1.3 and 2.3% of the phenotypic mean of purebred calves, respectively. The same features for direct and maternal epistatic loss effects were -2.2% (P < 0.05) and -0.1% (P > 0.05). The large SE of breed effects were likely due to multicollinearity among predictor variables and deficiencies in the dataset to separate direct and maternal effects and may result in a less reliable ranking of the animals for across breed comparisons. Further research to identify the causes of the instability of estimates of breed additive, dominance, and epistatic loss genetic effects, and application of alternative statistical methods is recommended.  相似文献   
2.
Solanum americanum Mill. is a weed that occurs with a number of crops, and it is known for its high seed production and its staggered germination. The objective of this work was to evaluate the germination behavior of S. americanum seeds under the influence of chemical and environmental factors. In the laboratory, we tested the effect on germination of (i) constant and alternating temperatures, (ii) seed washing, (iii) exposure time and concentration of chemical treatments and (iv) seeding depth and soil covered with plant residue on seedling emergence. The variables analyzed were germination percentage, germination rate index, seedling emergence and length of the seedlings. The results indicated that alternating temperatures are the main way to promote germination of S. americanum; however, chemical treatments can help to increase the germination percentage and rate index. There was no increase in germination with seed washing, with the exception of KNO3 application. A GA3 concentration of 0.84 g L?1 and an exposure time of 21.22 h in 0.2% of KNO3 promoted the highest germination of S. americanum. Germination occurs when seeds remain on the soil surface and are not covered by crop residue.  相似文献   
3.
Red rice is the main weed in rice paddy fields. Imidazolinone herbicides in resistant rice cultivars currently provide a unique opportunity to control red rice in large-scale rice fields. However, the continuous use of this technology has resulted in imidazolinone-resistant red rice biotypes. This study aimed to identify the mechanism of herbicide resistance and the frequency and spatial distribution of the known imidazolinone herbicide-resistant alleles in red rice. The nucleotide sequence of the ALS gene indicated that the G654E, S653D and A122T mutations are present in the imidazolinone herbicide-resistant rice cultivars IRGA 422 CL, SATOR CL and PUITÁ INTA CL, respectively. This information and the nucleotide sequence surrounding these mutations were used for the development of single nucleotide polymorphism (SNP) molecular markers to identify the possible mutations that confer herbicide resistance in red rice. This analysis was carried out in a total of 481 plants from 38 populations collected as individuals that escaped control with the herbicides imazethapyr and imazapic in rice paddy fields in Southern Brazil. The G654E mutation was the most frequent, being found in 100% and 90.9% of the populations in the 2006/2007 and 20007/2008 seasons, respectively. In addition, the S653D and A122T mutations were also present either alone or as double or triple mutations in some plants. Target site insensitivity is the predominant mechanism of resistance in red rice resistant to imidazolinone herbicides in Southern Brazil. The high frequency of the S653D mutation, the same mutation responsible for the resistance in the rice cultivar largely used in Southern Brazil, indicates that gene flow is occurring from the rice cultivar to red rice. Management practices related to increasing crop sanitation and decreasing of herbicide selection pressure through crop rotation should be enforced to prevent the evolution of herbicide resistance in red rice.  相似文献   
4.
Breed additive, dominance, and epistatic loss effects are of concern in the genetic evaluation of a multibreed population. Multiple regression equations used for fitting these effects may show a high degree of multicollinearity among predictor variables. Typically, when strong linear relationships exist, the regression coefficients have large SE and are sensitive to changes in the data file and to the addition or deletion of variables in the model. Generalized ridge regression methods were applied to obtain stable estimates of direct and maternal breed additive, dominance, and epistatic loss effects in the presence of multicollinearity among predictor variables. Preweaning weight gains of beef calves in Ontario, Canada, from 1986 to 1999 were analyzed. The genetic model included fixed direct and maternal breed additive, dominance, and epistatic loss effects, fixed environmental effects of age of the calf, contemporary group, and age of the dam x sex of the calf, random additive direct and maternal genetic effects, and random maternal permanent environment effect. The degree and the nature of the multicollinearity were identified and ridge regression methods were used as an alternative to ordinary least squares (LS). Ridge parameters were obtained using two different objective methods: 1) generalized ridge estimator of Hoerl and Kennard (R1); and 2) bootstrap in combination with cross-validation (R2). Both ridge regression methods outperformed the LS estimator with respect to mean squared error of predictions (MSEP) and variance inflation factors (VIF) computed over 100 bootstrap samples. The MSEP of R1 and R2 were similar, and they were 3% less than the MSEP of LS. The average VIF of LS, R1, and R2 were equal to 26.81, 6.10, and 4.18, respectively. Ridge regression methods were particularly effective in decreasing the multicollinearity involving predictor variables of breed additive effects. Because of a high degree of confounding between estimates of maternal dominance and direct epistatic loss effects, it was not possible to compare the relative importance of these effects with a high level of confidence. The inclusion of epistatic loss effects in the additive-dominance model did not cause noticeable reranking of sires, dams, and calves based on across-breed EBV. More precise estimates of breed effects as a result of this study may result in more stable across-breed estimated breeding values over the years.  相似文献   
5.
Effect of exogenous prolactin on immunity in chickens   总被引:1,自引:0,他引:1  
The effect of exogenous prolactin on the number of peripheral white blood cells (WBC), anti-sheep red blood cell (anti-sheep RBC) and anti-rabbit red blood cell (anti-rabbit RBC) agglutinins was investigated in White Leghorn cockerels immunised twice with sheep RBC. It was found that prolactin, when administered for five days after second immunisation, raised production of anti-sheep RBC antibodies and lymphocyte number in comparison with the control group given injections of the solvent. Repeated injections of the solvent resulted in statistically significant differences in the number of granulocytes and lymphocytes.  相似文献   
6.
Bioeconomic models were developed to calculate economic values (EV) for economically important traits in beef cattle, to evaluate the impact of these traits on production profitability, to assess possible market changes with a payment system and to develop economic selection indexes for Angus cattle for two production systems. Two beef cattle production systems were simulated as follows: a cow‐calf cycle (CC) and a complete cycle (CoC). Following selection, positive changes in the EV were observed. In the CC, each 1.0% increment in weaning weight (WW), weaning rate (WR) and pregnancy rate (PR) resulted in increases in US$ 1.30, US$ 3.68 and US$ 3.55 per cow/year in profit, respectively. In the CoC, EV of US$ 1.01, US$ 1.79, US$ 1.19, US$ 1.34, US$ 6.84 and US$ 7.86 per cow/year were obtained for WW, year weight, yearling weight, final weight, WR and PR, respectively. The payment system for carcass quality showed that the scenario considering that 100% of the animals displayed uniform carcasses exhibited the highest EV and was considered optimal. Considering the sensitivity analysis, the price paid per animal was the factor that most affected the EV in both systems. The selection indexes obtained may be used in similar production systems, and the use of EV and selection indexes are important tools for any production system with positive change in profit after selection.  相似文献   
7.
8.
Covariance components were estimated for growth traits (BW, birth weight; WW, weaning weight; YW, yearling weight), visual scores (BQ, breed quality; CS, conformation; MS, muscling; NS, navel; PS, finishing precocity), hip height (HH), and carcass traits (BF, backfat thickness; LMA, longissimus muscle area) measured at yearling. Genetic gains were obtained and validation models on direct and maternal effects for BW and WW were fitted. Genetic correlations of growth traits with CS, PS, MS, and HH ranged from 0.20 ± 0.01 to 0.94 ± 0.01 and were positive and low with NS (0.11 ± 0.01 to 0.20 ± 0.01) and favorable with BQ (0.14 ± 0.02 to 0.37 ± 0.02). Null to moderate genetic correlations were obtained between growth and carcass traits. Genetic gains were positive and significant, except for BW. An increase of 0.76 and 0.72 kg is expected for BW and WW, respectively, per unit increase in estimated breeding value (EBV) for direct effect and an additional 0.74 and 1.43, respectively, kg per unit increase in EBV for the maternal effect. Monitoring genetic gains for HH and NS is relevant to maintain an adequate body size and a navel morphological correction, if necessary. Simultaneous selection for growth, morphological, and carcass traits in line with improve maternal performance is a feasible strategy to increase herd productivity.  相似文献   
9.
Cattle resistance to ticks is measured by the number of ticks infesting the animal. The model used for the genetic analysis of cattle resistance to ticks frequently requires logarithmic transformation of the observations. The objective of this study was to evaluate the predictive ability and goodness of fit of different models for the analysis of this trait in cross‐bred Hereford x Nellore cattle. Three models were tested: a linear model using logarithmic transformation of the observations (MLOG); a linear model without transformation of the observations (MLIN); and a generalized linear Poisson model with residual term (MPOI). All models included the classificatory effects of contemporary group and genetic group and the covariates age of animal at the time of recording and individual heterozygosis, as well as additive genetic effects as random effects. Heritability estimates were 0.08 ± 0.02, 0.10 ± 0.02 and 0.14 ± 0.04 for MLIN, MLOG and MPOI models, respectively. The model fit quality, verified by deviance information criterion (DIC) and residual mean square, indicated fit superiority of MPOI model. The predictive ability of the models was compared by validation test in independent sample. The MPOI model was slightly superior in terms of goodness of fit and predictive ability, whereas the correlations between observed and predicted tick counts were practically the same for all models. A higher rank correlation between breeding values was observed between models MLOG and MPOI. Poisson model can be used for the selection of tick‐resistant animals.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号