首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   3篇
畜牧兽医   14篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2008年   3篇
  2004年   1篇
  2003年   1篇
  1992年   2篇
  1990年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
2.
Maedi-visna virus (MVV) spreads horizontally via the respiratory route. In order to establish an experimental mucosal infection route, we compared intranasal and intratracheal inoculation using the infectious MVV molecular clone KV1772-kv72/67. For intranasal infection 0.5 x 10(3)-0.5 x 10(7) TCID50 of virus was sprayed into the nostrils of the sheep. For the intratracheal infection 10(0)-10(6) TCID50 of virus was injected into the trachea. Successful infection was indicated by development of MVV specific antibodies and virus isolation over a period of 6 months. In the intranasal infection, only the sheep receiving the highest dose i.e., 0.5 x 10(7) TCID50, became infected, suggesting that intranasal application was not an efficient mode of infection. In the intratracheal infection, the sheep infectious dose 50% was 10(1) TCID50 and virus could be isolated from the central nervous system 4 months post infection with 10(4) TCID50. Therefore it is concluded that intratracheal infection is a very efficient route for experimental inoculation with MVV.  相似文献   
3.
Allergic diseases occur in most mammals, although some species such as humans, dogs and horses seem to be more prone to develop allergies than others. In horses, insect bite hypersensitivity (IBH), an allergic dermatitis caused by bites of midges, and recurrent airway obstruction (RAO), a hyperreactivity to stable born dust and allergens, are the two most prevalent allergic diseases. Allergic diseases involve the interaction of three major factors: (i) genetic constitution, (ii) exposure to allergens, and (iii) a dysregulation of the immune response determined by (i) and (ii). However, other environmental factors such as infectious diseases, contact with endotoxin and degree of infestation with endoparasites have been shown to influence the prevalence of allergic diseases in humans. How these factors may impact upon allergic disease in the horse is unknown at this time. The 3rd workshop on Allergic Diseases of the Horse, with major sponsorship from the Havemeyer Foundation, was held in Hólar, Iceland, in June 2007 and focussed on immunological and genetic aspects of IBH and RAO. This particular venue was chosen because of the prevalence of IBH in exported Icelandic horses. The incidence of IBH is significantly different between Icelandic horses born in Europe or North America and those born in Iceland and exported as adults. Although the genetic factors and allergens are the same, exported adult horses show a greater incidence of IBH. This suggests that environmental or epigenetic factors may contribute to this response. This report summarizes the present state of knowledge and summarizes important issues discussed at the workshop.  相似文献   
4.
5.
6.
7.
Twenty isolates of Listeria monocytogenes associated with five confirmed and four suspected incidents of listeriosis in horses in Iceland were characterised by serotyping, pulsed-field gel electrophoresis and ribotyping. Semiquantitative estimates of the numbers of L monocytogenes were made on faeces from horses with clinical signs of listeriosis and on grass silage fed to them. Large numbers of L monocytogenes were often found in the faeces of horses with severe signs of disease. The 20 isolates could be divided into six genotypes, each incident involving only one genotype. One serovar 1/2a genotype was associated with three confirmed incidents of listeriosis in 1991, 1993 and 1997. In one incident, the same genotype was isolated from the organs of a horse with listeriosis and from the spoiled grass silage fed to it.  相似文献   
8.
9.
Antibodies to a transmissible gastroenteritis virus (TGEV)-related coronavirus have been demonstrated in mink sera by indirect immunofluorescence, peroxidase-linked antibody assays and immunoblotting. This is the first serological evidence of a specific coronavirus infection in mink. The putative mink coronavirus (MCV) seems to be widespread in the Danish mink population with a prevalence approaching 100%. Analysis by immunoblotting has shown that MCV is closely related to TGEV by the spike (S), matrix (M) and nucleoprotein (N) polypeptides. Furthermore, antibodies to MCV also cross-reacted with N and M polypeptides of porcine epidemic diarrhea virus (PEDV). Thus MCV may occupy an intermediate position between the TGEV group of coronavirus and PEDV. The possibility that MCV may be associated with syndromes of acute enteritis in preweaning mink is discussed.  相似文献   
10.

Background

In a stable of eight horses in Northern Iceland, six horses presented with clinical signs, such as ataxia and reduced appetite, leading to euthanasia of one severely affected horse. Serological investigations revealed no evidence of active equine herpes virus type 1 infection, a common source of central nervous system disease in horses, nor equine arteritis virus and West Nile virus. Another neurotropic virus, Borna disease virus, was therefore included in the differential diagnosis list.

Findings

Serological investigations revealed antibodies against Borna disease virus in four of five horses with neurological signs in the affected stable. One horse without clinical signs was seronegative. Four clinically healthy horses in the stable that arrived and were sampled one year after the outbreak were found seronegative, whereas one of four investigated healthy horses in an unaffected stable was seropositive.

Conclusions

This report contains the first evidence of antibodies to Borna disease virus in Iceland. Whether Borna disease virus was the cause of the neurological signs could however not be confirmed by pathology or molecular detection of the virus. As Iceland has very restricted legislation regarding animal imports, the questions of how this virus has entered the country and to what extent markers of Bornavirus infection can be found in humans and animals in Iceland remain to be answered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号