首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
  国内免费   2篇
  3篇
综合类   2篇
园艺   1篇
植物保护   1篇
  2012年   2篇
  2011年   1篇
  2008年   1篇
  2005年   1篇
  1998年   1篇
  1993年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
龙葵(Solanum nigrumL.)是Cd超累积植物,可用于植物冶金和Cd污染土壤的植物修复。超累积植物的生理基础研究有助于提高其对Cd的富集效率。龙葵种子在含有不同浓度CdCl(20、30、50、100、150、200μmol·L-1和300μmol·L-1)的琼脂培养基上萌发7d。结果表明,龙葵在200μmol·L-1和300μmol·L-1Cd时发芽率显著降低,而低浓度Cd(30~150μmol·L-1)胁迫下无显著差异;在Cd≥30μmol·L-1时,活力指数、发芽势均显著降低,幼苗的生长受到显著抑制。幼苗生长分析表明:在30~150μmol·L-1Cd处理下根长下降约17%~35%,显著低于200~300μmol·L-1Cd处理(下降79%~90%);株高随Cd浓度的升高逐渐下降。子叶抗氧化酶活性分析表明:100~150μmol·L-1Cd胁迫下,CAT和APX活性显著上升;在Cd胁迫下,SOD活性降低但维持在较高的活性水平。表明龙葵幼苗能忍耐小于150μmol·L-1Cd,抗氧化酶活性在抵抗Cd毒害方面发挥重要作用。  相似文献   
2.
镉对龙葵种子萌发及子叶抗氧化酶活性的影响   总被引:2,自引:0,他引:2  
龙葵(Solanum nigrumL.)是Cd超累积植物,可用于植物冶金和Cd污染土壤的植物修复。超累积植物的生理基础研究有助于提高其对Cd的富集效率。龙葵种子在含有不同浓度CdCl(20、30、50、100、150、200μmol·L-1和300μmol·L-1)的琼脂培养基上萌发7d。结果表明,龙葵在200μmol·L-1和300μmol·L-1Cd时发芽率显著降低,而低浓度Cd(30~150μmol·L-1)胁迫下无显著差异;在Cd≥30μmol·L-1时,活力指数、发芽势均显著降低,幼苗的生长受到显著抑制。幼苗生长分析表明:在30~150μmol·L-1Cd处理下根长下降约17%~35%,显著低于200~300μmol·L-1Cd处理(下降79%~90%);株高随Cd浓度的升高逐渐下降。子叶抗氧化酶活性分析表明:100~150μmol·L-1Cd胁迫下,CAT和APX活性显著上升;在Cd胁迫下,SOD活性降低但维持在较高的活性水平。表明龙葵幼苗能忍耐小于150μmol·L-1Cd,抗氧化酶活性在抵抗Cd毒害方面发挥重要作用。  相似文献   
3.
印度芥菜(Brassica juncea L.)重金属耐性机理研究进展   总被引:4,自引:0,他引:4  
印度芥菜可富集/忍耐Cd、Zn 等多种重金属, 是研究植物修复技术的一种模式植物。高浓度的重金属离子会改变植物的基因表达、细胞形态、细胞结构, 最终使植物生长受抑, 甚至死亡。印度芥菜高效的抗氧化系统、损伤修复系统以及对重金属的螯合、区域化可部分解除重金属的毒性, 缓解重金属离子的毒害作用。利用基因工程技术在印度芥菜中导入重金属耐性及运输相关基因可大幅度提高其重金属富集能力, 在重金属污染修复方面具有广阔的应用前景。  相似文献   
4.
苜蓿花叶病毒侵染对菜豆胁迫响应基因表达的影响   总被引:1,自引:0,他引:1  
张玉秀  柴团耀 《园艺学报》1998,25(4):394-401
苜蓿花叶病毒(AlfalfaMosaicVirusAMV)侵染菜豆(PhaseolusvulgarisL.)叶片后,能强烈地诱导病程相关蛋白PR2基因的表达,促进富含脯氨酸细胞壁蛋白、dehydrin、polyubiquitin和DanJlike蛋白等基因的转录水平。这些防御蛋白共同作用对于保护细胞免受病毒伤害和维持细胞的正常代谢有重要作用。  相似文献   
5.
植物水通道蛋白研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
高等植物细胞质膜、液泡膜上存在着丰富的水通道蛋白,它广泛分布于几乎所有器官和组织,并具 有一定的组织特异性。文章介绍了植物水通道蛋白的发现、结构、分类以及近年来在亚细胞定位、基因表达和功能 方面的研究进展,初步探讨了植物水通道蛋冉研究中存在的问题及今后的研究热点。  相似文献   
6.
7.
重金属对小麦和黑麦种子萌发及幼苗生长的影响   总被引:4,自引:0,他引:4  
小麦(Triticum aetivum)作为世界上第一大粮食作物,是人类最主要的食物来源,在全球粮食贸易中占有十分重要的地位。随着人口增加、土地减少和农业生产环境条件改变及生活水平提高,对小麦品种的要求也越来越严格,单纯依靠小麦种内遗传资源已不能满足育种的需要;同时,由于小麦育种的定向选择,使其遗传多样性丢失,导致遗传基础日益狭窄,不仅限制了产量和品质的进一步改良,而且使小麦对生物性和非生物性环境胁迫的脆弱性增加,所以有必要开发新的基因资源,  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号