首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
畜牧兽医   7篇
园艺   1篇
  2019年   1篇
  2003年   2篇
  1999年   1篇
  1967年   3篇
  1966年   1篇
排序方式: 共有8条查询结果,搜索用时 265 毫秒
1
1.
2.
Context

Urbanization is a substantial force shaping the genetic and demographic structure of natural populations. Urban development and major highways can limit animal movements, and thus gene flow, even in highly mobile species. Characterizing varying species responses to human activity and fragmentation is important for maintaining genetic continuity in wild animals and for preserving biodiversity. As one of the only common and wide-ranging large wild herbivores in much of urban North America, deer play an important ecological role in urban ecosystems, yet the genetic impacts of development on deer are not well known.

Objectives

We assessed genetic connectivity for mule deer to understand their genetic response to habitat fragmentation, due to development and highway barriers, in an increasingly urbanized landscape.

Methods

Using non-invasive sampling across a broad region of southern California, we investigated genetic structure among several natural areas that were separated by major highways and applied least-cost path modelling to determine if landscape context and highway attributes influence genetic distance for mule deer.

Results

We observed significant yet variable differentiation between subregions. We show that genetic structure corresponds with highway boundaries in certain habitat patches, and that particular landscape configurations more greatly limit gene flow between patches.

Conclusions

As a large and highly mobile species generally considered to be well adapted to human activity, mule deer nonetheless showed genetic impacts of intensive urbanization. Because of this potential vulnerability, mule deer and other ungulates may require further consideration for effective habitat management and maintenance of landscape connectivity in human-dominated landscapes.

  相似文献   
3.
4.
5.
6.
7.
Veterinary Research Communications -  相似文献   
8.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号