首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  1篇
园艺   1篇
  2013年   1篇
  1999年   1篇
排序方式: 共有2条查询结果,搜索用时 62 毫秒
1
1.
The influence of prey density, within-field vegetation, and the composition and patchiness of the surrounding landscape on the abundance of insect predators of cereal aphids was studied in wheat fields in eastern South Dakota, USA. Cereal aphids, aphid predators, and within-field vegetation were sampled in 104 fields over a three year period (1988–1990). The composition and patchiness of the landscape surrounding each field were determined from high altitude aerial photographs. Five landscape variables, aggregated at three spatial scales ranging from 2.6 km2 to 581 km2, were measured from aerial photographs. Regression models incorporating within-field and landscape variables accounted for 27–49% of the variance in aphid predator abundance in wheat fields. Aphid predator species richness and species diversity were also related to within-field and landscape variables. Some predators were strongly influenced by variability in the composition and patchiness of the landscape surrounding a field at a particular spatial scale while others responded to variability at all scales. Overall, predator abundance, species richness, and species diversity increased with increasing vegetational diversity in wheat fields and with increasing amounts of non-cultivated lands and increasing patchiness in the surrounding landscape.  相似文献   
2.
Cereal aphid infestations have considerable impact upon productivity and profitability of United States agriculture. A comparison study of the influence of different aphid species (Russian wheat aphid, Duraphis noxia Mordvilko; greenbug, Schizaphis graminum Rondani; and bird cherry oat aphid, Rhopalosiphum padi L.) upon shoot characteristics and root growth of hard red spring wheat (Triticum aestivum L.) was conducted in an attempt to better understand the mechanisms of yield loss in aphid damaged plants. Plants infested with aphids showed similar reductions in shoot growth regardless of aphid species. Shoot chlorophyll concentrations were lowest in greenbug‐infested plants. Root length and dry weight were also equally reduced by feeding damage by the three aphid species. Upon removal of the aphids, shoot dry weights of plants damaged by each aphid species remained unchanged for 10 days. Shoot dry weights for aphid‐damaged plants were about half the magnitude seen in the control plants after 15 days. Chlorophyll concentrations seen in greenbug and Russian wheat aphid‐infested plants initially were lower than the concentrations seen in bird cherry oat aphid‐infested and control plants. Within 10 days after aphid removal, however, chlorophyll concentrations across all treatments were essentially equal. Root lengths in plants previously infested with greenbugs or Russian wheat aphids were lower than control plants four days after aphid removal. Within 10 days after aphid removal, root lengths in plants previously infested with greenbugs or Russian wheat aphids did not differ from control plants. Root lengths in plants previously damaged by bird cherry oat aphids did not reach the same magnitude as that of the other treatments until 27 days after aphid removal. These results indicate that aphid feeding damage to wheat plants can have significant effects on root growth, suggesting that crop management practices that promote root growth could play important roles in improving plant tolerance to aphid damage.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号