首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  1篇
园艺   1篇
植物保护   3篇
  2020年   1篇
  2012年   1篇
  2011年   2篇
  1978年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
Landscape Ecology - Restoring landscape connectivity can mitigate fragmentation and improve population resilience, but functional equivalence of contrasting elements is poorly understood....  相似文献   
2.
3.
ABSTRACT Asian soybean rust (ASR) is an economically significant disease caused by the fungus Phakopsora pachyrhizi. The soybean genes Rpp3 and Rpp?(Hyuuga) confer resistance to specific isolates of the pathogen. Both genes map to chromosome 6 (Gm06) (linkage group [LG] C2). We recently identified 12 additional soybean accessions that harbor ASR resistance mapping to Gm06, within 5 centimorgans of Rpp3 and Rpp?(Hyuuga). To further characterize genotypes with resistance on Gm06, we used a set of eight P. pachyrhizi isolates collected from geographically diverse areas to inoculate plants and evaluate them for differential phenotypic responses. Three isolates elicited different responses from soybean accessions PI 462312 (Ankur) (Rpp3) and PI 506764 (Hyuuga) (Rpp?[Hyuuga]). In all, 11 of the new accessions yielded responses identical to either PI 462312 or Hyuuga and 1 of the new accessions, PI 417089B (Kuro daizu), differed from all others. Additional screening of Hyuuga-derived recombinant inbred lines indicated that Hyuuga carries two resistance genes, one at the Rpp3 locus on Gm06 and a second, unlinked ASR resistance gene mapping to Gm03 (LG-N) near Rpp5. These findings reveal a natural case of gene pyramiding for ASR resistance in Hyuuga and underscore the importance of utilizing multiple isolates of P. pachyrhizi when screening for ASR resistance.  相似文献   
4.
Simple sequence repeat (SSR) markers were used to classify 116 isolates of Phakopsora pachyrhizi, the cause of soyabean rust, collected from infected soyabean leaves in four agroecological zones in Nigeria. A high degree of genetic variation was observed within the sampled populations of P. pachyrhizi. Eighty‐four distinct genotypes were identified among three of the four agroecological zones. Nei’s average genetic diversity across geographical regions was 0·22. Hierarchical analysis of molecular variance showed low genetic differentiation among all populations of P. pachyrhizi. The majority (> 90%) of the genetic diversity was distributed within each soyabean field, while approximately 6% of the genetic diversity was distributed among fields within geographic regions. Low population differentiation was indicated by the low FST values among populations, suggesting a wide dispersal of identical genotypes on a regional scale. Phylogenetic analysis indicated a strictly clonal structure of the populations and five main groups were observed, with group II accounting for 30% of the entire population. Because of the asexual reproduction of P. pachyrhizi, single‐step mutations in SSR genotypes are likely to account for the genetic differences within each group.  相似文献   
5.
Several physicochemical factors which can influence the interactions between pest and pesticide are described. These relate mainly to the pesticides partition, reaction and diffusion processes. The combination of diffusion and partition processes in controlled release formulations is examined in some detail via theoretical consideration of encapsulated material. Extensive control of release can be obtained this way with the release time ranging from minutes to years. The advantages and disadvantages of controlled release are discussed and the relevance of theoretical considerations of this type to commercial objectives is touched upon.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号