首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
林业   6篇
农学   1篇
  1篇
园艺   2篇
  2012年   2篇
  2011年   1篇
  2005年   1篇
  2003年   1篇
  2001年   3篇
  1999年   1篇
  1984年   1篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
Based on recent needs to accurately understand fire regimes and post-fire vegetation resilience at a supra-level for carbon cycle studies, this article focusses on the coupled history of fire and vegetation pattern for 40 years on a fire-prone area in central Corsica (France). This area has been submitted since the beginning of the 20th century to land abandonment and the remaining land management has been largely controlled by frequent fires. Our objectives were to rebuild vegetation and fire maps in order to determine the factors which have driven the spatial and temporal distribution of fires on the area, what were the feed backs on the vegetation dynamics, and the long-term consequences of this inter-relationship. The results show a stable but high frequency of small fires, coupled with forest expansion over the study period. The results particularly illustrate the spatial distribution of fires according to topography and vegetation, leading to a strong contrast between areas never burnt and areas which have been burnt up to 7 times. Fires, when occuring, affect on average 9 to 12% of the S, SE and SW facing slopes (compared to only 2 to 5% for the N facing slopes), spread recurrently over ridge tops, affect all the vegetation types but reburn preferentially shrublands and grasslands. As these fire-proning parameters have also been shown to decrease the regeneration capacity of forests, this study highlights the needs in spatial studies (both in terms of fire spread and vegetation dynamic) to accurately apprehend vegetation dynamic and functionning in fire-prone areas.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   
2.
Reviewing the situation of quinoa production in southern Bolivia, Jacobsen (2011, J. Agron. Crop Sci. 197: 390) argues that the booming export market has a negative effect on the environment and on the home consumption of quinoa, thereby leading to an environmental disaster in the region. In view of the scarcity of scientific knowledge on the rapid social and environmental dynamics in the region, we consider that Jacobsen’s review misrepresents the situation of quinoa production in southern Bolivia. Specifically, we argue that (i) the data presented by Jacobsen (2011, J. Agron. Crop Sci. 197: 390) do not support any drop in quinoa crop yield supposed to reflect soil degradation and (ii) his demonstration regarding home consumption of quinoa is ill‐founded from both a nutritional and a cultural point of view. We suggest that the diffusion of the arguments exposed by Jacobsen (2011, J. Agron. Crop Sci. 197: 390), because of their flaws, might have strong negative impacts on those concerned with sustainable food production and fair‐trade with developing countries. We conclude that, rather than reinforced agro‐technical controls on local farmers, the rising competition in the international quinoa market requires a shift towards an ethical economy and ethical research cooperation with quinoa producers.  相似文献   
3.
Remobilization of internal resources is an important mechanism enabling plants to be partly independent of external nutrient availability. We assessed resource remobilization during the growing period in woody and foliar tissues of leafy branches of mature evergreen Mediterranean oak (Quercus ilex L.) at three field sites. We compared nonstructural carbohydrates, lipids, nitrogen and phosphorus pools in leaves and stems before bud burst (March) and at the end of the growing period (July). We also experimentally defoliated leafy branches to determine the storage function of old leaves. Changes in pools of carbon compounds in leaves and stems during spring and in response to defoliation indicated that foliar and woody tissues could provide carbon to support shoot growth. Independently of stem age, soluble sugar and lipid pools decreased significantly during spring. Changes in leaf pools between March and July involved all compounds measured except starch and were accompanied by a 5% decrease in mean leaf biomass. During the same period, 15% of the nitrogen and 25% of the phosphorus were removed from leaves. In contrast, woody tissues did not remobilize nitrogen or phosphorus. Our results support earlier hypotheses that leaves of evergreen species have a primary role in resource remobilization.  相似文献   
4.
Two hundred years of landscape changes were studied on a 3,760 ha area of central Corsica (France) representing a typical Mediterranean environment. Different historical sources, including an accurate land-cover map from 1774 and statistics on land cover from 1848 and 1913, were used. Three additional maps (1960, 1975 and 1990) were drawn, and a complete fire history from 1957 to 1997 was created. Forests expanded slowly by a border effect. Forest expansion was more rapid in unburnt sites (0.59% per year) than in burnt sites (0.23% per year), mostly because the initial amount of forests was greater. Because of the border effect, the combination of past landscape pattern and short distance colonization abilities of forest species may have allowed the shrublands to persist in some places after land abandonment. This persistence may explain the pattern of fire in the landscape, since shrubland burn more readily than forests.  相似文献   
5.
Leaves of Mediterranean evergreens experience large variations in gas exchange rates over their life span due to aging and seasonally changing environmental conditions. Accounting for the changing respiratory physiology of leaves over time will help improve estimations of leaf and whole-plant carbon balances. Here we examined seasonal variations in light-saturated net CO(2) assimilation (A(max)), dark respiration (R(d)) and the proportional change in R(d) per 10 °C change in temperature (Q(10) of R(d)) in previous-year (PY) and current-year (CY) leaves of the broadleaved evergreen tree Quercus ilex L. A(max) and R(d) were lower in PY than in CY leaves. Differences in nitrogen between cohorts only partly explained such differences, and rates of A(max) and R(d) expressed per unit of leaf nitrogen were still significantly different between cohorts. The decline in A(max) in PY leaves did not result in the depletion of total non-structural carbohydrates, whose concentration was in fact higher in PY than CY leaves. Leaf-level carbon balance modeled from gas exchange data was positive at all ages. Q(10) of R(d) did not differ significantly between leaf cohorts; however, failure to account for distinct R(d) between cohorts misestimated canopy leaf respiration by 13% across dates when scaling up leaf measurements to the canopy. In conclusion, the decline in A(max) in old leaves that are close to or exceed their mean life span does not limit the availability of carbohydrates, which are probably needed to sustain new growth, as well as R(d) and nutrient resorption during senescence. Accounting for leaf age as a source of variation of R(d) improves the estimation of foliar respiratory carbon release at the stand scale.  相似文献   
6.
S. Rambal  M. Ibrahim  M. Rapp 《CATENA》1984,11(1):177-186
An example of principal component analysis applied to soil water storage change data from an experimental forest stand is presented. It is suggested that this analysis method would be suitable to identify the factors which influence the spatial variability and to select, from thirteen measurement points, two representative points of the hydrodynamic functionning of this stand. The first principal component explains 82 percent of the variability. It is highly correlated with the bulk density of the soil. The next component is associated with multidimensional flow. The selected points have mean coordinates on the first axis and are neutral on the second axis. The mean error in the estimation of the changes of soil water storage, mades from the only measurement of these two points, is negligible.  相似文献   
7.
We investigated growth, leaf monoterpene emission, gas exchange, leaf structure and leaf chemical composition of 1-year-old Quercus ilex L. seedlings grown in ambient (350 microl l(-1)) and elevated (700 microl l(-1)) CO2 concentrations ([CO2]). Monoterpene emission and gas exchange were determined at constant temperature and irradiance (25 degrees C and 1000 micromol m(-2) s(-1) of photosynthetically active radiation) at an assay [CO2] of 350 or 700 microl l(-1). Measurements were made on intact shoots after the end of the growing season between mid-October and mid-February. On average, plants grown in elevated [CO2] had significantly increased foliage biomass (about 50%). Leaves in the elevated [CO2] treatment were significantly thicker and had significantly higher concentrations of cellulose and lignin and significantly lower concentrations of nitrogen and minerals than leaves in the ambient [CO2] treatment. Leaf dry matter density and leaf concentrations of starch, soluble sugars, lipids and hemi-cellulose were not significantly affected by growth in elevated [CO2]. Monoterpene emissions of seedlings were significantly increased by elevated [CO2] but were insensitive to short-term changes in assay [CO2]. On average, plants grown in elevated [CO2] had 1.8-fold higher monoterpene emissions irrespective of the assay [CO2]. Conversely, assay [CO2] rapidly affected photosynthetic rate, but there was no apparent long-term acclimation of photosynthesis to growth in elevated [CO2]. Regardless of growth [CO2], photosynthetic rates of all plants almost doubled when the assay [CO2] was switched from 350 to 700 microl l(-1). At the same assay [CO2], mean photosynthetic rates of seedlings in the two growth CO2 treatments were similar. The percentage of assimilated carbon lost as monoterpenes was not significantly altered by CO2 enrichment. Leaf emission rates were correlated with leaf thickness, leaf concentrations of cellulose, lignin and nitrogen, and total plant leaf area. In all plants, monoterpene emissions strongly declined during the winter independently of CO2 treatment. The results are discussed in the context of the acquisition and allocation of resources by Q. ilex seedlings and evaluated in terms of emission predictions.  相似文献   
8.

Introduction   

Future climatic scenarios demand an increasing involvement of management for forest preservation, but little is known on how forestry practices will benefit stands in facing variation of climatic components.  相似文献   
9.
The dehesas of the southwestern Iberian Peninsula are 'man-made' ecosystems characterised by a savannah-like physiognomy. The trees are viewed as an integrated part of the system, and as a result are planted, managed, and regularly pruned. Palynological and historical evidence of the manipulation of initial ecosystems by man to obtain a savannah-like ecosystem is presented. The ecological functions of the tree are detailed using results obtained at two complementary scales. At the local scale, strong soil structural differences and functional differences in water budget and patterns of water use are observed under and outside the tree canopy. Using the concept of ecosystem mimicry, the two coexistent components of dehesas can be compared to two distant stages of a secondary succession characterised by very different behaviours. At the regional scale, evidence of relationships between tree density and mean annual precipitation over more than 5000 km2 suggests that the structure of these man-made agroecosystems have adjusted over the long-term and correspond to an optimal functional equilibrium based on the hydrological equilibrium hypothesis. Finally, the future of dehesas in the face of contemporary exogenous threats of economic and global environmental origin is discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
10.
Within-tree variation in sap flow density (SFD) was measured in two isolated evergreen oak (Quercus ilex L.) trees growing in an oak savannah (dehesa) in southwest Spain. Sap flow was estimated by the constant heating method. Three sensors were installed in the trunk of each tree in three orientations: northeast (NE), northwest (NW) and south (S). Sap flow density was monitored continuously from May 18 to September 27, 1993. Daily values of SFD ranged between 500 and 4500 mm3 mm-2 day-1. There were significant differences in SFD between orientations; SFD was higher in the NE and NW orientations than in the S orientation. These differences were noted on both a daily and seasonal time scale, and were less pronounced on cloudy days and at the end of the drought period, when SFD was relatively low. Our results support the idea that branches of trees can be viewed as a collection of small independent plants.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号