首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
林业   1篇
  3篇
园艺   2篇
  2010年   1篇
  2008年   2篇
  2006年   1篇
  2005年   1篇
  1997年   1篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
Analysis of the spatial distribution of all species of conservation importance within a region is necessary to augment reserve selection strategies and habitat management in biodiversity conservation. In this study, we analyzed the spatial aggregation, spatial association, and vegetation types of point occurrence data collected from museum and herbaria records for rare, special concern, threatened, and endangered species of plants, reptiles, mammals, and birds in western Riverside County in southern California, USA. All taxa showed clumped distributions, with aggregation evident below 14 km for plants, 12 km for reptiles, 2 km for mammals, and 10 km for birds. In addition, all combinations of the different species groups showed high positive spatial association. The Santa Rosa Plateau exhibited the highest number of rare, special concern, threatened, and endangered species, and shrubland (coastal sage and chaparral) was the vegetation type inhabited by the most species. Local land use planning, zoning and reserve design should consider the spatial aggregation within and between species to determine the appropriate scale for conservation planning. The higher spatial association between species groups in this study may indicate interdependence between different species groups or shared habitat requirements. It is important to maintain diverse communities due to potential interdependence. The results of the study indicate that concentrating preservation efforts on areas with the highest number of species of concern and the restoration of native shrublands are the most appropriate actions for multiple species habitat conservation in this area.  相似文献   
2.
We compared 5 zones in shrubsteppe habitats of southwestern Idaho to determine the effect of differing disturbance combinations on landscapes that once shared historically similar disturbance regimes. The primary consequence of agriculture, wildfires, and extensive fires ignited by the military during training activities was loss of native shrubs from the landscape. Agriculture created large square blocks on the landscape, and the landscape contained fewer small patches and more large shrub patches than non-agricultural areas. In contrast, fires left a more fragmented landscape. Repeated fires did not change the distribution of patch sizes, but decreased the total area of remaining shrublands and increased the distance between remaining shrub patches that provide seed sources. Military training with tracked vehicles was associated with a landscape characterized by small, closely spaced, shrub patches.Our results support the general model hypothesized for conversion of shrublands to annual grasslands by disturbance. Larger shrub patches in our region, historically resistant to fire spread and large-scale fires because of a perennial bunchgrass understory, were more fragmented than small patches. Presence of cheatgrass (Bromus tectorum), an exotic annual, was positively related to landscape patchiness and negatively related to number of shrub cells. Thus, cheatgrass dominance can contribute to further fragmentation and loss of the shrub patch by facilitating spread of subsequent fires, carried by continuous fuels, through the patch. The synergistic processes of fragmentation of shrub patches by disturbance, invasion and subsequent dominance by exotic annuals, and fire are converting shrubsteppe in southwestern Idaho to a new state dominated by exotic annual grasslands and high fire frequencies.  相似文献   
3.
In coastal southern California, natural riparian corridors occur in a landscape mosaic comprised of human land uses (mainly urban and suburban development) interspersed among undeveloped areas, primarily native shrublands. We asked, does the composition of the landscape surrounding a riparian survey point influence plant species distribution, community composition, or habitat structure? We expected, for example, that invasive non-native species might be more abundant as the amount of surrounding urbanization increased. We surveyed 137 points in riparian vegetation in Orange County, California, along an urbanization gradient. Using logistic regression we analyzed 79 individual plant species’ distributions, finding 20 negatively associated and 12 positively associated with the amount of development within a 1-km radius around the survey points, even after accounting for the effects of elevation. However, after summarizing plant community composition with Detrended Correspondence Analysis we observed that, overall, community composition was not statistically correlated with the amount of development surrounding a survey point once the association between development and elevation was taken into account. Non-native species were not particularly associated with increasing development, but instead were distributed throughout vegetation and urbanization gradients. However, the extent of the tree and herb layers (structural attributes) was associated with development, with the tree layer increasing and the herb layer decreasing as urbanization increased. Thus, although the degree of surrounding urbanization appears to influence the distribution of a number of individual plant species, overall composition of the community in our study system seemed relatively unaffected. Instead, we suggest that community composition reflected larger-scale environmental conditions, such as stream order and other variables associated with elevation, and/or regional-scale disturbances, such as historic grazing or enhanced atmospheric deposition of nitrogen.  相似文献   
4.
Bioclimatic models aimed assessing a species’ sensitivity to climate change incorporate mean shifts in climate variables; however the more acute threat to the persistence of species may result from increased frequency of extreme climatic events, including increased duration and severity of droughts. Here we assess climate-change sensitivity using niche modeling that unlike bioclimatic modeling incorporates both climate variables as well as other habitat features that constrain a species’ distribution. We analyzed the effects of potential increases in drought frequency for an endangered, sand dune-restricted lizard, a species restricted to a narrowly occurring substrate and so unable to move up-slope or pole-ward to track climate shifts. Our niche modeling results indicated only minor losses to the area of suitable niche space at lower levels of modeled climate change; at the most severe climate shifts we tested the area of suitable niche space reduced by slightly more than 50%. However, extrapolating the potential impacts of reduced rainfall on drought periodicity and intensity showed a more immediate and acute impact on the lizard’s populations. Drought duration projections coupled with landscape fragmentation resulted in rapid losses of suitable niche space, beginning in the more arid portion of the lizard’s range and extending into more moderate climate areas. Although there is greater uncertainty associated with the impacts of climate change on drought periodicity than with shifts in mean conditions, our results show a greater potential for droughts to negatively impact species’ resilience to such changes.  相似文献   
5.
Snags are an important resource for a wide variety of organisms, including cavity-nesting birds. We documented snag attributes in a mixed-conifer forest dominated by ponderosa pine in the Sierra Nevada, California where fire is being applied during spring. A total of 328 snags were monitored before and after fire on plots burned once, burned twice, or left unburned to assess the effects of prescribed fire on snag populations. The greatest loss of snags (7.1 snags ha−1 or 43%) followed the first introduction of fire after a long fire-free period. On plots burned a second time 21% of snags (3.6 snags ha−1) were lost, whereas 8% (1.4 snags ha−1) were lost on unburned control plots in the same time period. New snags replaced many of those lost reducing the net snag losses to 12% (2.0 ha−1) for plots burned once, and 3% (0.5 ha−1) for plots burned twice and unburned plots. We also examined snags used by cavity-nesting birds. Snags preferred for nesting were generally ponderosa pine (Pinus ponderosa), larger diameter, and moderately decayed as compared to available snags. For monitored snags that met the preferred criteria, there was a net loss (1.7 snag ha−1 or 34%) after the first burn, while the loss of useable snags was less than 1 snag ha−1 following the second burn (15%) or on unburned controls (8%). We recommend protection of preferred snags, in particular large ponderosa pines, especially during primary fire applications on fire-suppressed landscapes.  相似文献   
6.
In contrast to the body of work in more mesic habitats, few studies have examined boundary processes between natural and anthropogenic desert landscapes. Our research examined processes occurring at boundaries between a desert sand dune community and an encroaching suburban habitat. We measured responses to an anthropogenic boundary by species from multiple trophic levels, and incorporated measures of habitat suitability, and temporal variation, at multiple spatial scales. At an edge versus core habitat scale the only aeolian sand species that demonstrated an unambiguous negative response to the anthropogenic habitat edges was the flat-tailed horned lizard (Phrynosoma mcallii). Conversely loggerhead shrikes (Lanius ludovicianus) demonstrated a positive response to that edge. At a finer scale, species that exhibited a response to a habitat edge within the first 250 m included the horned lizards along with desert kangaroo rats (Dipodomys deserti). The latter species’ response was confined to 25 m from the edge. For the flat-tailed horned lizard, edge effects were measured up to 150 m from the habitat boundary. Three potential causal hypotheses were explored to explain the edge effect on horned lizards: (1) invasions of exotic ant species reducing potential prey for the lizards; (2) road avoidance and road associated mortalities; and (3) predation from a suite of avian predators whose occurrence and abundance may be augmented by resources available in the suburban habitat. We rejected the exotic ant hypothesis due to the absence of exotic ants within the boundary region, and because native ant species (prey for horned lizards) did not show an edge effect. Our data supported the predation and road mortality hypotheses. Mechanisms for regulating population dynamics of desert species are often “bottom-up,” stochastic processes driven by precipitation. The juxtaposition of an anthropogenic edge appears to have created a shift to a “top-down,” predator-mediated dynamic for these lizards.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号