首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
园艺   2篇
  2021年   1篇
  2020年   1篇
排序方式: 共有2条查询结果,搜索用时 109 毫秒
1
1.
Wimp  Gina M.  Murphy  Shannon M. 《Landscape Ecology》2021,36(10):2849-2861
Landscape Ecology - Historically, habitat edges were thought to increase diversity by combining communities from two habitats, but empirical results are mixed. Variation in edge responses may be...  相似文献   
2.
Rippel  Tyler M.  Mooring  Eric Q.  Tomasula  Jewel  Wimp  Gina M. 《Landscape Ecology》2020,35(10):2179-2190
Context

Habitat fragmentation is known to be one of the leading causes of species extinctions, however few studies have explored how habitat fragmentation impacts ecosystem functioning and carbon cycling, especially in wetland ecosystems.

Objectives

We aimed to determine how habitat fragmentation, defined by habitat area and distance from habitat edge, impacts the above-ground carbon cycling and nutrient stoichiometry of a foundation species in a coastal salt marsh.

Methods

We conducted our research in a salt marsh in the Mid-Atlantic United States, where the foundation grass species Spartina patens is being replaced by a more flood-tolerant grass, leading to highly fragmented habitat patches. We quantified decomposition rates, live biomass, and litter accumulation of S. patens at patch edges and interiors. Additionally, we measured relevant characteristics (e.g., habitat area, elevation, microclimate) of S. patens patches.

Results

Habitat edge effects, and not habitat area effects, had distinct impacts on ecosystem functioning. Habitat edges had less litter accumulation, faster decomposition rates, a warmer and drier microclimate, and lower elevations than patch interiors. Patches with low elevation edges had the fastest decomposition rates, while interiors of patches at any elevation had the slowest decomposition rates. Notably, these impacts were not driven by changes in primary production.

Conclusion

Habitat fragmentation impacts the above-ground carbon cycling of S. patens in coastal wetlands by altering litter decomposition, but not primary production, through habitat edge effects. Future research should investigate whether this pattern scales across broader landscapes and if it is observable in other wetland ecosystems.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号