首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  5篇
园艺   1篇
植物保护   1篇
  2021年   1篇
  2013年   1篇
  2010年   1篇
  2006年   1篇
  2003年   1篇
  2002年   1篇
  1996年   1篇
排序方式: 共有7条查询结果,搜索用时 218 毫秒
1
1.
Eldridge  David J.  Zaady  Eli  Shachak  Moshe 《Landscape Ecology》2002,17(6):587-597
Human-made contour banks are a central component of theShikim water harvesting system in Israels Negev Desert.Efficient water capture depends on the presence of a stable microphytic crustwhich directs surplus surface runoff into the banks where it is stored. We usedsimulated rainfall to examine the impact of soil surface disturbance on runoffand sediment transport, and the effect of this on the efficiency of resourcecapture within the Shikim system. Two disturbance regimes:1) removal of the microphytic crust only, and 2) removal of the crust and shrubpatches by cultivation, were compared with an undisturbed control. In theundisturbed state, 32% of rainfall was redistributed as runoff. This runoffpenetrated approximately 27% deeper under the shrub patches compared with themicrophytic crust. When the microphytic crust was destroyed by simulatedtrampling, the runoff coefficient declined to 13%, and there was no significantdifference in water penetration between shrub and crust patches. Completedestruction of the shrub hummocks and crust by cultivation resulted in adeclinein the runoff coefficient to 6%. The result of sustained disturbance in thesepatchy Negev shrublands is a breakdown in spatial heterogeneity, a loss ofecosystem function, a reduction in ecosystem goods and services such as plantdiversity and production, and ultimately a reduction in pastoral productivity.These results reinforce the view that microphytic crusts are critical for theefficient operation of the Shikim water harvesting system.Given that practices such as cultivation and trampling which disturbmicrophyticcrusts result in enhanced infiltration, crusts should be left intact tomaximisethe water harvesting efficiency in these desert landscapes.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   
2.
Arid areas are highly sensitive to climate change and are ideal model systems to study the potential impact of climate change on species' community structure. Biological soil crust (BSC) formation plays an ecological role in a number of key processes in the development of dry ecosystems. It was hypothesized that BSC succession and function are affected by aridity level and limited by rainfall. Furthermore, it is possible to infer the direction of the BSC succession based on aridity level, and the latter can imitate future climate change scenarios. The objectives of this study were to investigate the microbial biomass and diversity of the BSC structure in three sites differing in aridity level (semiarid, arid and hyper-arid), by combining physical and biophysiological measurements with 16S rRNA gene fragment and phospholipid fatty acid (PLFA) analyses. Physical and biophysiological parameters of the BSC were significantly influenced by aridity level. Total protein and polysaccharide contents were strongly correlated with total PLFA-based microbial biomass. Gram-positive biomarkers and microbial biomass were significantly higher in the wettest (semiarid) site than in the driest (hyper-arid) one. Multivariate-analysis based ordination of the PLFA data segregated the cluster of semiarid data from that of the hyper-arid site, while data from the arid site were dispersed between the two. The phylogenetic distribution of prominent 16S rRNA bacterial gene sequences along the aridity levels was in agreement with the PLFA analysis: the hyper-arid site was dominated by the cyanobacterium Microcoleus vaginatus, while diverse populations of cyanobacteria and soil bacteria were found in the other sites. These complementary tools allowed a simple and sensitive measurement of the influence of aridity levels on BSC successional stage. The results demonstrate that different aridity levels correspond to different BSC successional stages and those differences can be used as parameters for global change scenarios.  相似文献   
3.

Inoculation experiments of natural pastures with the rhizobacterium Azospirillum brasilense were conducted in Israel in 1996, in two climatically differentiated regions. These experiments were carried out as part of a project with the objective of estimating the potential of the inoculation technique in improving pasture yields. The effects of inoculation with A. brasilense were compared to P-fertilization and to untreated controls. In two semiarid sites, it was generally observed that both the inoculation and the P-fertilization treatments increased pasture yield as measured by dry weight biomass. It was also found that both inoculation and P-fertilization treatments caused an enrichment in legumes relatively to grasses and forbs. Despite the ecological complexity of these sites and the variability of the data, statistical significance was generally achieved. In a more topographically uniform site, located in a typical Mediterranean climate, the positive effects of A. brasilense inoculation in plant-growth were substantially clear, with final yields duplicated in both inoculation and combined (inoculation and P-fertilization) treatments in comparison to P-fertilization alone and untreated controls. The potential of using A. brasilense for growth promotion of natural pastures is discussed.  相似文献   
4.
Snail grazing and feces production have been shown to be major components of the nitrogen (N) budget of Negev Desert ecosystems. However, the movement of N from feces into soil N cycling processes has not been studied. In this study, we measured immediate N release from different types of snail feces following wetting of dry desert soils, and characterized potential net N mineralization and nitrification and soil respiration over a 12-day incubation under laboratory conditions. The dynamics of morganic N exhibited two distinct phases during the 12-day incubation: (1) immediate release of inorganic N following wetting of the soil and (2) decline of inorganic N from day 1 today 12 of the incubation. The immediate pulse of N release from this one wetting event (6–25 mg N m-2) was larger than annual atmospheric inputs of N to Negev Desert ecosystems (<2 mg N m-2); however, from 50 to 80% of the N released upon wetting was consumed by the end of the incubation. There were differences in inorganic N release and respiration from feces from different kinds of snails, and from feces from the same species of snail fed different plants. The results suggest that while snail feces contribute significant amounts of plant available N to Negev ecosystems, plants must compete with other sinks for this N.  相似文献   
5.
The harvester termite, Anacanthotermes ubachi Navas (Hodotermitidea) occurs throughout the desert regions of Israel. This species nests in subsurface galleries where dead plant material, the termite's main food source, and feces are stored. We measured potential net nitrogen (N) mineralization and nitrification and soil respiration in 7-day laboratory incubations of plant litter at different stages of termite processing, termite feces and termite gallery soil (carton) following wetting. Our objectives were (1) to characterize the amount of potential N release from termite-affected plant and soil materials, (2) to evaluate the potential for leaching of N from the galleries and (3) to make a preliminary evaluation of the importance of termites to the carbon (C) and N cycles of the Negev desert. Two distinct phases were seen in the dynamics of inorganic N during the 7 day incubations: (1) release of N following wetting and (2) immobilization of N from day 1 to day 7 of the incubation. The percent of inorganic N produced in 1 day that disappeared by day 7 was significantly higher in the surface and gallery litter in comparison to the feces and the carton. High levels of nitrate (NO3: 87.5 g N kg−1) compared to ammonium (NH4+: 4.5 g N kg−1) release from the surface and gallery litter samples suggest that there is a potential for leaching of NO3 from the galleries to surrounding environments. Gallery litter, i.e. litter that had been processed by termites, released significantly less inorganic N and had a higher C:N ratio than surface litter that had not been affected by termite activity. These results suggest that termites actively remove N for their own nutrition, leaving behind litter of lower quality than was produced by plants. Comparison of the C:N ratios of litter and feces suggest that approximately 80% of the C and 65% of the N in the surface and the gallery litter was decomposed and released in the transformation to feces. Given mean annual biomass production in the study site (740 kg ha−1 with 296 kg C ha−1 and 6.6 kg N ha−1), this decomposition represents a release of 237 kg C ha−1 and 4.3 kg N ha−1, supporting the idea that termites function as keystone species in desert ecosystems.  相似文献   
6.
7.
Patchy distribution of vegetation within semi-arid shrublands is normally mirrored in the soil beneath perennial shrubs (macrophytic patches), compared to inter-shrub areas (microphytic patches). To determine impacts of (1) litterfall inputs within vegetation patches and (2) rainfall distribution on soil C and N, we investigated soil C and N pools and associated soil properties in two semi-arid shrublands, in the Negev Desert of Israel (Lehavim), which receives >90% of annual rainfall during winter and in the Chihuahuan Desert, USA (FHMR) that experiences a bimodal (Summer-Winter) annual rainfall pattern. We also evaluated grazing effects on soil C and N pools at Lehavim. More distinct differences in soil properties existed between patch types at the Negev site, where the soils contained higher soil organic C and N, amino acids and sugars, asparaginase activity and plant-available N than those at FHMR. Soil organic C (0-5 cm) in macrophytic patches was 39 g/kg at Lehavim and 13 g/kg at FHMR, and asparaginase activity was as high as 70 μg N/g 2 h in macrophytic patches at Lehavim, two times higher than at FHMR. The soil (0-5 cm) δ13C was −15 to −18‰ at Lehavim and −18 to −19‰ at FHMR, with significantly lower δ13C in macrophytic patches at both sites. The δ13C suggested that considerable macrophytic patch soil C was derived from cyanobacteria at Lehavim and C4 grasses at FHMR. Plant litter δ15N was 0.9‰ at Lehavim and 0.6‰ at FHMR, suggesting that much plant N was derived from N fixation. Concentrations of inorganic soil N (NH4++NO3) were up to 37 mg N/kg at Lehavim and <9 mg N/kg at FHMR. Grazing at Lehavim resulted in lower soil CH, AA, and AS. We conclude that differences between the sites are due largely to (i) higher amounts of litterfall C and N inputs within macrophytic patches at Lehavim and (ii) the different precipitation patterns, with summer precipitation at FHMR promoting increased organic matter mineralization compared to Lehavim, which experiences Winter precipitation only. Furthermore, greater differences in soil properties between patch types at Lehavim compared to FHMR can likely be attributed to the increasing importance of physical processes of resource dispersion at the more humid site in Arizona.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号