首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
植物保护   2篇
  2011年   1篇
  2009年   1篇
排序方式: 共有2条查询结果,搜索用时 46 毫秒
1
1.
There are concerns that genetically modified soybean might threaten the genetic diversity of the wild soybean populations that are distributed in East Asia because genetically modified soybean has no crossing barrier with wild soybean. A simple and effective method to prevent hybridization via pollen flow is spatial separation between the two species because their hybridization occurs only when they grow in close proximity. Therefore, the invasiveness of wild soybean needs to be known in order to secure the appropriate distances. As wild soybean seeds are dispersed mechanically by pod dehiscence, an experiment was conducted in which white sheets were placed on the ground, concentric circles were drawn around the parent plants, and the number of dispersed seeds within each 0.5 m‐wide zone were counted. About 40% of the produced seeds were dispersed and the number of dispersed seeds gradually declined as the distance from the parent plants increased. The model that explained the relationship between the number and distance of the dispersed seeds was produced by using a generalized linear model procedure. More than 95, 99, and 99.9% of the produced seeds stayed within 3.5, 5.0, and 6.5 m after natural pod dehiscence. Knowing these values is useful for evaluating the level of invasive risk by mechanical seed dispersal. The goal of the work is to efficiently and deliberately prevent hybridization by isolating genetically modified soybean fields and wild soybean populations by vegetation management, including weeding and setting up specific‐width buffer zones.  相似文献   
2.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号