首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
水产渔业   1篇
植物保护   2篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
排序方式: 共有3条查询结果,搜索用时 6 毫秒
1
1.
2.
Three isomers of the ligand 2,5-bis(pyridinyl)-1,3,4-thiadiazole, with the N atom of pyridine group in position 2, 3 or 4, named respectively, L2, L3 and L4 were compared for their use as plant defense activators. They were examined for their ability to protect tomato plants from Verticillium dahliae and Agrobacterium tumefaciens in the greenhouse, to induce reactive oxygen species and to activate plant defenses, including antioxidant enzymes. The three ligand isomers exhibited in vitro only slight inhibition of radial growth of V. dahliae, while no significant inhibition was observed for phytopathogenic bacteria. In the greenhouse, the three ligand isomers statistically reduced the severity of Verticillium wilt and crown gall on tomato plants, and the isomers L3 and L4 were the most efficient to control Verticillium wilt. This superiority was reflected in their differential ability to activate H2O2 accumulation, antioxidant enzymes including catalase and ascorbate peroxidase and other defense-related enzymes such as guaiacol peroxidase and polyphenol oxidase. These results demonstrated that the presence of the N atom within the two pyridinyl groups in the position 3 or 4 highly enhanced the activity of plant defense and antioxidant responses as well as their ability to reduce the severity of symptoms caused by V. dahliae on tomato.  相似文献   
3.
Immunostimulatory feed supplements have an increasingly interest in aquaculture management. Generally, an individual supplement was used in fish diets but it is expected that the use of multi‐supplements may show synergistic enhancements in fish performance, health, and immunity. Therefore, the present investigation was carried out to evaluate the use of dietary probiotic Lactobacillus plantarum and whey protein concentrate (WPC) in practical diets for Nile tilapia, Oreochromis niloticus. Hence, probiotic L. plantarum, WPC and their mixture were incorporated into a basal fish diet (300 g/kg crude protein) as follows: T1 = a basal control diet, T2 = a basal diet containing L. plantarum, T3 = a basal diet containing 1.0 g WCP/kg diet and T4, T5 or T6 = basal diets containing probiotic L. plantarum + 1.0, 2.0 or 3.0 g WCP/kg diet, respectively. Fish (15.2 ± 0.6 g) were fed on one of the tested diets up to apparent satiation twice a day for 60 days. After that, fish were intraperitoneally injected with pathogenic bacteria Aeromonas sobria and fish mortality was observed for 10 days postchallenge. Fish growth and feed intake were significantly improved by dietary probiotic L. plantarum (T2) and/or WPC (T3) over the control group (T1), and highest fish performance was observed in T5–T6 fish groups. Similarly, highest values of haematocrit, glucose, total proteins, albumin, and globulin were significantly observed in T5–T6 fish groups. Likewise, fish fed dietary probiotic L. plantarum (T2), WPC (T3), and their mixture (T4–T6) showed antioxidants and immune‐stimulating activities better than the control group. Fish fed the control diet were more susceptible to A. sobria infection showing highest fish mortality (75.0%). Meanwhile, dietary probiotic L. plantarum (T2), WPC (T3), and their mixture (T4–T6) enhanced significantly the fish resistance to A. sobria infection resulting in maximum values of relative percent of fish survival (73.3%–80.0%) in T5–T6 groups. The present investigation recommended the use of probiotic L. plantarum with 2.0 g WPC/kg diet to improve the growth, antioxidant, immunity responses and tolerance of Nile tilapia to A. sobria infection.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号