首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
林业   4篇
综合类   1篇
植物保护   2篇
  2021年   2篇
  2014年   1篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2003年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Red spruce (Picea rubens Sarg.) and black spruce (Picea mariana (Mill.) B.S.P.) are genetically and morphologically similar but ecologically distinct species. We determined intraspecific seed-source and interspecific variation of red spruce and black spruce, from across the near-northern margins of their ranges, for several light-energy processing and freezing-tolerance adaptive traits. Before exposure to low temperature, red spruce had variable fluorescence (Fv) similar to black spruce, but higher photochemical efficiency (Fv/Fm), lower quantum yield, lower chlorophyll fluorescence (%), and higher thermal dissipation efficiency (qN), although the seed-source effect and the seed-source x species interaction were significant only for Fv/Fm. After low-temperature exposure (-40 degrees C), red spruce had significantly lower Fv/Fm, quantum yield and qN than black spruce, but higher chlorophyll fluorescence and relative fluorescence. Species, seed-source effect, and seed-source x species interaction were consistent with predictions based on genetic (e.g., geographic) origins. Multi-temperature exposures (5, -20 and -40 degrees C) often produced significant species and temperature effects, and species x temperature interactions as a result of species-specific responses to temperature exposures. The inherent physiological species-specific adaptations of red spruce and black spruce were largely consistent with a shade-tolerant, late-successional species and an early successional species, respectively. Species differences in physiological adaptations conform to a biological trade-off, probably as a result of natural selection pressure in response to light availability and prevailing temperature gradients.  相似文献   
2.
Our goal was to quantify and compare the impact of three silvicultural treatments (STs) on growth, light-energy processing, and needle-level morphological adaptive traits for eastern white pine (Pinus strobus L.) from large, central Ontario (ON) and small, isolated Newfoundland (NL) populations. The interest in STs is to reduce weevil (Pissodes strobi) incidence; however, there are potential adaptive changes and productivity trade-offs. The light levels for the STs were, on average, 100%, 42.0%, and 20.4% transmittance for the full-sun, and intermediate- and high-shade STs, respectively. After 8 years, overall height growth was 4.10, 3.25, and 1.70 m for full-sun, and intermediate- and high-shade STs, respectively (P < 0.001). Across all STs, ON populations had greater total height (14%), basal diameter (12%), current leader length (25%), and tree volume (49%) than NL populations (all P < 0.001). At low light levels (10 and 25 μmol m−2 s−1), high-shade ST trees had higher photochemical quenching (qP) and lower chlorophyll fluorescence (Fpc) compared with intermediate-shade and full-sun STs. At 100 μmol m−2 s−1 and beyond, full-sun ST trees had higher qP and lower Fpc than intermediate- and high-shade STs. Average total chlorophyll concentration (CHL) and content (CHLC), and carotenoid concentration (CAR), increased in response to the intermediate-shade ST but did not respond further, or decreased in the high-shade ST. Region was significant for CHL, CAR, chlorophyll a:b and CHL:CAR ratios and CHLC, with ON greater than NL, but was reversed for CHL:CAR ratio. Tree height and volume showed a curvilinear and linear relationship to light level, respectively. Tree height showed a positive linear relationship to qP, apparent photosynthesis, chlorophyll a:b ratio, and needle N (all P < 0.001). Tree height showed a negative linear relationship to Fpc, CHL:CAR ratio, specific needle area, C:N ratio, and needle area N−1 (all P < 0.001). There were modest trade-offs between weevil protection and productivity in the intermediate ST due to the compensatory physiological and morphological adaptations to the limiting light, however, the trade-off with growth at the high-shade level was severe. For NL, consideration should now be given to the introduction and mixing of seed from local seed sources with more southern mainland seed sources, which would decrease the inbreeding effect and provide wider variation for natural selection for a more fit future population.  相似文献   
3.
European Journal of Plant Pathology - Five populations of a new dagger nematode species were recovered from natural grasslands and forests of north and northwest Iran, and described based upon...  相似文献   
4.
European Journal of Plant Pathology - A Correction to this paper has been published: https://doi.org/ https://doi.org/10.1007/s10658-021-02272-1  相似文献   
5.
The nature of pulse propagation through a material with a negative value of the group velocity has been mysterious, as simple models seem to predict that pulses will propagate "backward" through such a material. Using an erbium-doped optical fiber and measuring the time evolution of the pulse intensity at many points within the fiber, we demonstrate that the peak of the pulse does propagate backward inside the fiber, even though the energy flow is always in the forward direction.  相似文献   
6.
7.
Traits related to light-energy processing have significant ecological implications for plant fitness. We studied the effects of elevated atmospheric CO(2) concentration ([CO(2)]) on chloroplast pigment traits of a red spruce (RS) (Picea rubens Sarg.)-black spruce (BS) (P. mariana (Mill.) B.S.P.) genetic complex in two experiments: (1) a comparative species' provenance experiment from across the near-northern part of the RS range; and (2) an intra- and interspecific controlled-cross experiment. Results from the provenance experiment showed that total chlorophyll (a + b) concentration was, on average, 15% higher in ambient [CO(2)] than in elevated [CO(2)] (P < 0.001). In ambient [CO(2)], BS populations averaged 11% higher total chlorophyll and carotenoid concentrations than RS populations (P < 0.001). There were significant species, CO(2), and species x CO(2) interaction effects, with chlorophyll concentration decreasing about 7 and 26% for BS and RS, respectively, in response to elevated [CO(2)]. Results from the controlled-cross experiment showed that families with a hybrid index of 25 (25% RS) had the highest total chlorophyll concentrations, and families with hybrid indices of 75 and 100 had among the lowest amounts. Initial analysis of the controlled-cross experiment supported a more additive model of inheritance; however, parental analysis showed a significant and predominant male effect for chlorophyll concentration. In ambient and elevated [CO(2)] environments, crosses with BS males had 10.6 and 17.6% higher total chlorophyll concentrations than crosses with hybrid and RS males, respectively. Our results show that chlorophyll concentration is under strong genetic control, and that these traits are positively correlated with productivity within and across species. A significant positive correlation between chlorophyll concentration and the ratio of total plant N to root dry mass was also found (r = 0.872). The almost fourfold decrease in chlorophyll concentration in RS suggests that it would be at a competitive disadvantage compared with BS in a high [CO(2)] environment.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号