首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   37篇
农学   1篇
  3篇
综合类   3篇
农作物   2篇
水产渔业   1篇
畜牧兽医   131篇
植物保护   7篇
  2020年   2篇
  2019年   1篇
  2018年   9篇
  2017年   15篇
  2016年   7篇
  2015年   7篇
  2014年   15篇
  2013年   14篇
  2012年   10篇
  2011年   15篇
  2010年   15篇
  2009年   6篇
  2008年   1篇
  2007年   3篇
  2006年   5篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  1999年   4篇
  1998年   3篇
  1997年   6篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1986年   1篇
排序方式: 共有148条查询结果,搜索用时 578 毫秒
1.
2.
3.
Computer model predictions and field observations of anthelmintic resistance in sheep · Dangers of off‐label use of barium selenate · Elbow luxation in dogs and cats · Prognosis of joint infections in adult horses · Omentalisation for mediastinal abscess in a dog · Adenoviruses in lizards  相似文献   
4.
5.
6.
7.
ABSTRACT Molecular analysis of sources of resistance to plant pathogens should expedite and confirm novel gene discovery and consequently the development of disease resistant cultivars. Recently, soybean plant introductions (PIs) were identified that contain putative novel Rps genes for resistance to Phytophthora sojae. The number of resistance genes that confer resistance to P. sojae isolates OH17 (1b,1d,2,3a,3b,3c,4,5,6,7) and OH25 (1a,1b,1c,1k,7) was then determined in several of the PIs. The objective of this study was to determine if the Rps genes present in these PIs were associated with eight described Rps loci that have been mapped on soybean molecular linkage groups F, G, J, and N. Nine F(2:3) soybean populations were genotyped with simple sequence repeat (SSR) markers linked to previously mapped Rps loci. The nine PI populations all had SSR markers associated (P < 0.01) with resistance to P. sojae isolate OH17 in the Rps1 region. Rps1c is a likely candidate in eight PIs but novel genes may also be possible, while novel genes may confer resistance in one PI to P. sojae isolate OHI7. Two or more Rps genes, including some that are potentially novel, confer resistance to P. sojae isolate OH25 in eight of the populations. However, based on the response to these two isolates, virulence already exists for at least some of the novel genes identified in this study.  相似文献   
8.
ABSTRACT Phytophthora sojae, which causes Phytophthora root and stem rot of soybean, is a serious disease worldwide and is managed primarily by deploying cultivars with resistance. Thirty-two soybean plant introductions (PIs), all but three of which were from South Korea, were proposed as new sources of single-gene resistance to P. sojae. The objective of this study was to characterize the inheritance of resistance to P. sojae in these PIs. Twenty-two soybean populations from crosses of these PIs and the susceptible cv. Williams were inoculated with P. sojae OH17 (vir 1b, 1d, 2, 3a, 3b, 3c, 4, 5, 6, 7), and OH25 (vir 1a, 1b, 1c, 1k, 7). These isolates were selected because they are virulent on soybeans with all known Rps genes and many Rps gene combinations. Thirteen of the twenty-two populations had consistent segregation responses following inoculations between the two generations. In two PIs, resistance was conferred by two genes to OH17 and three genes to OH25. Resistance to both isolates was conferred by a single gene in PI 398440 although the individual families were not resistant to the same isolates. The data suggest that six of the populations have three-Rps gene combinations as previously proposed, while another four may have either a novel Rps gene or a four-Rps gene combination. Based on this phenotypic analysis, novel and uncharacterized Rps genes may be present in this material. More importantly, these PIs may serve as sources of novel Rps genes that can be used to more effectively manage Phytophthora root and stem rot.  相似文献   
9.
10.
ObjectiveTo determine the level of agreement between an oscillometric (O-NIBP) and an invasive method (IBP) of monitoring arterial blood pressure (ABP) in anesthetized sheep, goats, and cattle.Study designProspective clinical study.AnimalsTwenty sheep and goats, 20 cattle weighing <150 kg body weight, and 20 cattle weighing >150 kg body weight.MethodsAnimals were anesthetized and systolic ABP (SABP), mean ABP (MABP), and diastolic ABP (DABP) were measured using IBP and O-NIBP. Differences between IBP and O-NIBP, and 95% limits of agreement (LOA) between SABP, MABP, and DABP values were assessed by the Bland–Altman method.ResultsMean difference ± standard deviation (range) between SABP, DABP, and MABP measurements in sheep and goats was 0 ± 16 (-57 to 38) mmHg, 13 ± 16 (-37 to 70) mmHg, and 8 ± 13 (-34 to 54) mmHg, respectively. Mean difference between SABP, DABP, and MABP measurements in small cattle was 0 ± 19 (-37 to 37) mmHg, 6 ± 18 (-77 to 48) mmHg, and 4 ± 16 (-73 to 48) mmHg, respectively. Mean difference between SABP, DABP, and MABP measurements in large cattle was -18 ± 32 (-107 to 71) mmHg, 7 ± 29 (-112 to 63) mmHg, and -5 ± 28 (-110 to 60) mmHg, respectively. The 95% LOAs for SABP, DABP, and MABP were -31 to +31, -19 to +44, and -19 to +34 mmHg, respectively in sheep and goats; were -37 to +37, -19 to +44, and -19 to +34 mmHg, respectively in small cattle; and were -81 to +45, -50 to +63, and -59 to +50 mmHg, respectively in large cattle.ConclusionsAgreement was poor between O-NIBP and IBP monitoring techniques.Clinical relevanceArterial BP should be monitored in anesthetized sheep, goats, and cattle using IBP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号