首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
  4篇
农作物   1篇
畜牧兽医   5篇
园艺   1篇
植物保护   2篇
  2022年   1篇
  2021年   2篇
  2016年   1篇
  2015年   1篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  1983年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
We examined collembolan food preference for fungal mycelium grown on copper-contaminated medium, and the relationship between copper content, food selectivity and collembolan fitness when fed contaminated mycelium.To clarify whether collembolan food selectivity is related to fitness parameters, Folsomia candida were fed mycelium of the dark-pigmented fungus Alternaria alternata grown on medium with different copper concentrations. Copper-contaminated food (fungus grown on 50, 125, 250 and 500 μg Cu g−1 medium, fresh wt.) was offered together with untreated food for 4 weeks. F. candida fed selectively on the provided mycelium and discriminated clearly between mycelium grown on high and low levels of contamination, distinctly preferring fungus grown on medium with a total copper concentration of 50 and 125 μg g−1. In contrast, fungus grown on highly contaminated medium (250 and 500 μg g−1) was avoided. Collembolan food preference generally matched fitness parameters. Reproduction was significantly affected by the total copper concentration of the fungal growth medium. When fed their preferred mycelium, collembolan reproduction was enhanced, whereas a diet of highly contaminated mycelium (250 or 500 μg g−1) resulted in a strong decrease in reproduction. Adult survival was affected only marginally. Even though heavy metal contamination is a potential stress factor for many soil microarthropods, F. candida is able to discriminate between high and low quality food sources, and even benefits from moderately elevated copper concentrations.  相似文献   
2.
We examined collembolan food preference for fungal mycelium grown on copper-contaminated medium, and the relationship between copper content, food selectivity and collembolan fitness when fed contaminated mycelium.To clarify whether collembolan food selectivity is related to fitness parameters, Folsomia candida were fed mycelium of the dark-pigmented fungus Alternaria alternata grown on medium with different copper concentrations. Copper-contaminated food (fungus grown on 50, 125, 250 and 500 μg Cu g?1 medium, fresh wt.) was offered together with untreated food for 4 weeks. F. candida fed selectively on the provided mycelium and discriminated clearly between mycelium grown on high and low levels of contamination, distinctly preferring fungus grown on medium with a total copper concentration of 50 and 125 μg g?1. In contrast, fungus grown on highly contaminated medium (250 and 500 μg g?1) was avoided. Collembolan food preference generally matched fitness parameters. Reproduction was significantly affected by the total copper concentration of the fungal growth medium. When fed their preferred mycelium, collembolan reproduction was enhanced, whereas a diet of highly contaminated mycelium (250 or 500 μg g?1) resulted in a strong decrease in reproduction. Adult survival was affected only marginally. Even though heavy metal contamination is a potential stress factor for many soil microarthropods, F. candida is able to discriminate between high and low quality food sources, and even benefits from moderately elevated copper concentrations.  相似文献   
3.
Homeless populations are particularly exposed to many vector-borne diseases because of their poor living conditions. We tested sera from 299 homeless people recruited in 2010 and 2011 in Marseilles, France for antibodies to Rickettsia typhi by microimmunofluorescence using a titer of 1:25 as a cut-off titer, and we confirmed the results by Western blot and cross-adsorption studies. Sixty-three persons (22%) had antibodies against R. typhi. The murine typhus seroprevalence rates have significantly increased in homeless populations between the 2000-2003 and 2010-2011 periods. These findings indicate that the homeless are increasingly exposed to flea-borne murine typhus in Marseilles. One might suggest that multiple strikes of sanitation workers resulting in the increase of waste and construction sites combined with the poor living conditions of the homeless expose this population to rodents and their fleas. Further annual studies are necessary to follow rodent-associated diseases among homeless people in Marseille.  相似文献   
4.
5.

Background

The plant plasma membrane is a key battleground in the war between plants and their pathogens. Plants detect the presence of pathogens at the plasma membrane using sensor proteins, many of which are targeted to this lipophilic locale by way of fatty acid modifications. Pathogens secrete effector proteins into the plant cell to suppress the plant’s defense mechanisms. These effectors are able to access and interfere with the surveillance machinery at the plant plasma membrane by hijacking the host’s fatty acylation apparatus. Despite the important involvement of protein fatty acylation in both plant immunity and pathogen virulence mechanisms, relatively little is known about the role of this modification during plant-pathogen interactions. This dearth in our understanding is due largely to the lack of methods to monitor protein fatty acid modifications in the plant cell.

Results

We describe a rapid method to detect two major forms of fatty acylation, N-myristoylation and S-acylation, of candidate proteins using alkyne fatty acid analogs coupled with click chemistry. We applied our approach to confirm and decisively demonstrate that the archetypal pattern recognition receptor FLS2, the well-characterized pathogen effector AvrPto, and one of the best-studied intracellular resistance proteins, Pto, all undergo plant-mediated fatty acylation. In addition to providing a means to readily determine fatty acylation, particularly myristoylation, of candidate proteins, this method is amenable to a variety of expression systems. We demonstrate this using both Arabidopsis protoplasts and stable transgenic Arabidopsis plants and we leverage Agrobacterium-mediated transient expression in Nicotiana benthamiana leaves as a means for high-throughput evaluation of candidate proteins.

Conclusions

Protein fatty acylation is a targeting tactic employed by both plants and their pathogens. The metabolic labeling approach leveraging alkyne fatty acid analogs and click chemistry described here has the potential to provide mechanistic details of the molecular tactics used at the host plasma membrane in the battle between plants and pathogens.
  相似文献   
6.
7.
8.
The prolamins in seven Algerian Sahara sorghum cultivars of varying seed shape and color were investigated. Protein contents ranged from 12 to 16%. Prolamins were the major protein fraction. They could be separated according to degree of disulfide cross‐linking. Kafirin monomers and low molecular weight polymers could be extracted with 70% ethanol, whereas highly cross‐linked kafirins additionally needed a reducing agent to become extractable. Kafirin monomers of α‐, β‐ and γ‐type were purified and N‐terminally sequenced. For the first time, δ‐kafirin was identified at the protein level. The study clearly revealed intercultivar differences between protein levels. The joint use of SDS‐PAGE, SE‐HPLC, and RP‐HPLC allowed discriminating among cultivars based on the differences in prolamin levels and composition.  相似文献   
9.
Recent studies have extended the rapidly developing retroviral restriction factor field to cells of carnivore species. Carnivoran genomes, and the domestic cat genome in particular, are revealing intriguing properties vis-à-vis the primate and feline lentiviruses, not only with respect to their repertoires of virus-blocking restriction factors but also replication-enabling dependency factors. Therapeutic application of restriction factors is envisioned for human immunodeficiency virus (HIV) disease and the feline immunodeficiency virus (FIV) model has promise for testing important hypotheses at the basic and translational level. Feline cell-tropic HIV-1 clones have also been generated by a strategy of restriction factor evasion. We review progress in this area in the context of what is known about retroviral restriction factors such as TRIM5α, TRIMCyp, APOBEC3 proteins and BST-2/Tetherin.  相似文献   
10.
Bacterial spot of cucurbits, caused by Xanthomonas cucurbitae, is an emerging disease of cucurbits. This study was conducted to identify Cucurbita species that are resistant to X. cucurbitae. We developed a reliable method for inoculating cucurbit plants by spraying plants with X. cucurbitae suspensions containing carborundum. Symptoms of the disease developed within 7 days after inoculation. Subsequently, we evaluated the virulence of six isolates of X. cucurbitae in the greenhouse and observed that X. cucurbitae isolated from cucurbit fields in Illinois, Michigan, Kansas, Ohio, and Wisconsin were more virulent than the reference ATCC 23378 strain. Then, we screened 81 commercial cultivars of gourds, pumpkins, and squashes, as well as 300 Cucurbita spp. accessions, for their resistance to X. cucurbitae under greenhouse and field conditions. In the greenhouse study, all commercial cultivars and some of the accessions developed typical symptoms of bacterial spot disease, while some of the accessions developed fewer lesions. In the field studies, infection of leaves and fruits was caused by both natural inoculum and spray-inoculation of plants with a suspension of the X. cucurbitae isolate from Illinois. Among 300 accessions tested, 9 and 21 accessions were classified as resistant and less resistant, respectively. Resistant and less resistant accessions belong to the species Cucurbita maxima, C. maxima subsp. maxima, C. maxima subsp. andreana, and C. okeechobeensis subsp. martinezii. This is the first report of potential resistance to bacterial spot of cucurbits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号