首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   3篇
畜牧兽医   10篇
植物保护   2篇
  2020年   2篇
  2018年   1篇
  2017年   2篇
  2014年   3篇
  2013年   2篇
  2011年   1篇
  2007年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
ABSTRACT Transgenic soybean (Glycine max) plants expressing Soybean mosaic virus (SMV) helper component-protease (HC-Pro) showed altered vegetative and reproductive phenotypes and responses to SMV infection. When inoculated with SMV, transgenic plants expressing the lowest level of HC-Pro mRNA and those transformed with the vector alone initially showed mild SMV symptoms. Plants that accumulated the highest level of SMV HC-Pro mRNA showed very severe SMV symptoms initially, but after 2 weeks symptoms disappeared, and SMV titers were greatly reduced. Analysis of SMV RNA abundance over time with region-specific probes showed that the HC-Pro region of the SMV genome was degraded before the coat protein region. Transgenic soybean plants that expressed SMV HC-Pro showed dose-dependent alterations in unifoliate leaf morphologies and seed production where plants expressing the highest levels of HC-Pro had the most deformed leaves and the lowest seed production. Accumulation of microRNAs (miRNAs) and mRNAs putatively targeted by miRNAs was analyzed in leaves and flowers of healthy, HC-Pro-transgenic, and SMV-infected plants. Neither expression of SMV HC-Pro nor SMV infection produced greater than twofold changes in accumulation of six miRNAs. In contrast, SMV infection was associated with twofold or greater increases in the accumulation of four of seven miRNA-targeted mRNAs tested.  相似文献   
2.
3.
4.
5.
6.

Objective

To evaluate the effect of Equivac® HeV Hendra virus vaccine on Thoroughbred racing performance.

Design

Retrospective pre‐post intervention study.

Methods

Thoroughbreds with at least one start at one of six major south‐eastern Queensland race tracks between 1 July 2012 and 31 December 2016 and with starts in the 3‐month periods before and after Hendra virus vaccinations were identified. Piecewise linear mixed models compared the trends in ‘Timeform rating’ and ‘margin to winner’ before and after initial Hendra virus vaccination. Generalised linear mixed models similarly compared the odds of ‘winning’, ‘placing’ (1st–3rd) and ‘winning any prize money’. Timeform rating trends were also compared before and after the second and subsequent vaccinations.

Results

Analysis of data from 4208 race starts by 755 horses revealed no significant difference in performance in the 3 months before versus 3 months after initial Hendra vaccination for Timeform rating (P = 0.32), ‘Margin to winner’ (P = 0.45), prize money won (P = 0.25), wins (P = 0.64) or placings (P = 0.77). Further analysis for Timeform rating for 7844 race starts by 928 horses failed to identify any significant change in Timeform rating trends before versus after the second and subsequent vaccinations (P = 0.16) or any evidence of a cumulative effect for the number of vaccines received (P = 0.22).

Conclusion

No evidence of an effect of Hendra virus vaccination on racing performance was found. The findings allow owners, trainers, industry regulators and animal health authorities to make informed decisions about vaccination.  相似文献   
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号