首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   0篇
  49篇
植物保护   5篇
  2013年   1篇
  2011年   1篇
  2008年   6篇
  2007年   7篇
  2006年   5篇
  2005年   5篇
  2004年   5篇
  2003年   5篇
  2002年   7篇
  2001年   2篇
  2000年   4篇
  1999年   3篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有54条查询结果,搜索用时 671 毫秒
1.
The interaction of ochratoxin A (OTA) and 20 yeast strains of Saccharomyces cerevisiae and Kloeckera apiculata during alcoholic fermentation was studied. Levels of OTA were determined in the fermentation liquid and in the yeast cells solid using a high-performance liquid chromatography system with a fluorescence detector. Yeast cells do not adsorb OTA, and for all yeasts, OTA levels did not affect the alcoholic fermentation. Some yeast strains reduced levels of OTA, whereas other strains did not show any effect demonstrating that OTA level reduction is not a genus species characteristic but a strain trait.  相似文献   
2.
The composition of the essential oil from ripe and unripe berries and leaves of Juniperus oxycedrus L. ssp. oxycedrus, Juniperus phoenicea ssp. turbinata and Juniperus communis ssp. communis was analyzed by GC-MS, and microbiological assays were carried out. Samples were collected in different localities (Sardinia, Italy) and hydro distilled. The yields ranged between 2.54% +/- 0.21 (v\w dried weight) and 0.04% +/- 0.00. A total of 36 components were identified. The major compounds in the essential oils were alpha-pinene, beta-pinene, delta-3-carene, sabinene, myrcene, beta-phellandrene, limonene, and D-germacrene. Both qualitative and quantitative differences between species and between different parts of the plant were observed. The essential oils and their major compounds were tested against Candida albicans, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, and the minimum inhibitory concentration and minimum bactericidal concentration were determined. The results obtained led to a nonsignificant inhibitory effect, although all the essential oils from Juniperus phoenicea ssp. turbinata and the essential oil from leaves of Juniperus oxycedrus ssp. oxycedrus exhibited rather good or weak activity against Candida albicans and Staphylococcus aureus.  相似文献   
3.
In this work an HPLC method for the determination of azadirachtin residues on olives was developed, and the field degradation kinetics of the pesticide was studied. In field trials the active ingredient (a.i.) decay had a half-life time of 0.8 days, which was too short to show a good efficacy of treatment. The mechanism of disappearance of the pesticide studied with model systems showed that it was unrelated to evaporation, thermodegradation, and co-distillation, but it was related to photodegradation. The high photodegradation rate of commercial formulations calls for the need to test different formulates in order to increase the persistence of the residue and thus the pesticide's efficacy.  相似文献   
4.
Pesticide residues in grapes, wine, and their processing products   总被引:10,自引:0,他引:10  
In this review the results obtained in the 1990s from research on the behavior of pesticide residues on grapes, from treatment to harvest, and their fate in drying, wine-making, and alcoholic beverage processing are reported. The fungicide residues on grapes (cyproconazole, hexaconazole, kresoxim-methyl, myclobutanil, penconazole, tetraconazole, and triadimenol), the application rates of which were of a few tens of grams per hectare, were very low after treatment and were not detectable at harvest. Pyrimethanil residues were constant up to harvest, whereas fluazinam, cyprodinil, mepanipyrim, azoxystrobin, and fludioxonil showed different disappearance rates (t(1/2) = 4.3, 12, 12.8, 15.2, and 24 days, respectively). The decay rate of the organophosphorus insecticides was very fast with t(1/2) ranging between 0.97 and 3.84 days. The drying process determined a fruit concentration of 4 times. Despite this, the residue levels of benalaxyl, phosalone, metalaxyl, and procymidone on sun-dried grapes equalled those on the fresh grape, whereas they were higher for iprodione (1.6 times) and lower for vinclozolin and dimethoate (one-third and one-fifth, respectively). In the oven-drying process, benalaxyl, metalaxyl, and vinclozolin showed the same residue value in the fresh and dried fruit, whereas iprodione and procymidone resides were lower in raisins than in the fresh fruit. The wine-making process begins with the pressing of grapes. From this moment onward, because the pesticide on the grape surface comes into contact with the must, it is in a biphasic system, made up of a liquid phase (the must) and a solid phase (cake and lees), and will be apportioned between the two phases. The new fungicides have shown no effect on alcoholic or malolactic fermentation. In some cases the presence of pesticides has also stimulated the yeasts, especially Kloeckera apiculata, to produce more alcohol. After fermentation, pesticide residues in wine were always smaller than those on the grapes and in the must, except for those pesticides that did not have a preferential partition between liquid and solid phase (azoxystrobin, dimethoate, and pyrimethanil) and were present in wine at the same concentration as on the grapes. In some cases (mepanipyrim, fluazinam, and chlorpyrifos) no detectable residues were found in the wines at the end of fermentation. From a comparison of residues in wine obtained by vinification with and without skins, it can be seen that their values were generally not different. Among the clarifying substances commonly used in wine (bentonite, charcoal, gelatin, polyvinylpolypyrrolidone, potassium caseinate, and colloidal silicon dioxide), charcoal allowed the complete elimination of most pesticides, especially at low levels, whereas the other clarifying substances were ineffective. Wine and its byproducts (cake and lees) are used in the industry to produce alcohol and alcoholic beverages. Fenthion, quinalphos, and vinclozolin pass into the distillate from the lees only if present at very high concentrations, but with a very low transfer percantage (2, 1, and 0.1%, respectively). No residue passed from the cake into the distillate, whereas fenthion and vinclozolin pass from the wine, but only at low transfer percentages (13 and 5%, respectively).  相似文献   
5.
The fungicide fenhexamid [N-(2,3-dichloro-4-hydroxyphenyl)-1-methylcyclohexanecarboxamide] degraded rapidly by UV or sunlight irradiation, yielding 7-chloro-6-hydroxy-2-(1-methylcyclohexyl)-1,3-benzoxazole (CHB) as a main photoproduct. CHB was isolated, and its effect on alcoholic fermentation of Saccharomyces cerevisiae was studied. The results indicate that the presence of CHB does not affect the extent of alcohol production. After 12 days, the amount of CHB in the fermentation medium decreased by ca. 65%. Only 25% of the missing CHB was recovered unchanged from yeasts, most likely because it was adsorbed on the yeast wall cell. The remaining part degraded during the fermentation process. Glucan and chitin, two potential adsorbents, which constitute yeast cell walls, exhibited affinity for CHB.  相似文献   
6.
Rotenone and rotenoids (deguelin, beta-rotenolone (12a beta-hydroxyrotenone), tephrosin (12a beta-hydroxydeguelin), 12a alpha-hydroxyrotenone, and dehydrorotenone) were determined in cubè resins and formulations. Cubè resins from Lonchocarpus contain large quantities of deguelin (ca. 21.2%) and smaller quantities of tephrosin (ca. 3.5%) and beta-rotenolone (ca. 3.0%). The composition of commercial formulations may present very different rotenoid contents depending on the extracts used to prepare them. Because these rotenoids also present insecticide activity, the efficacy of these formulations may be very different. The storage stability and photodegradation of some rotenone formulations were studied. Rotenone and rotenoids are very sensitive to solar radiation, which degrades them rapidly, with half-lives in the order of a few tens of minutes. Some formulations show greater disappearance rates than that of cubè resin, indicating that not much attention has been paid to protecting the active ingredients from photodegradation in the formulation. A study on the residues on olives was also carried out to assess not only the rotenone content, but also that of the main rotenoids. At harvest, the residues of deguelin, tephrosin, and beta-rotenolone were 0.10, 0.06, and 0.10 mg/kg, respectively, very similar to rotenone (0.08 mg/kg), and though a few data indicate similar acute toxicity values for deguelin, only rotenone is taken into consideration in the legal determination of the residue.  相似文献   
7.
The influence of fungicide concentration and treatment temperature on residue levels of pyrimethanil (PYR) in comparison with the commonly used fungicide imazalil (IMZ) was investigated in orange fruits following postharvest dip treatments. The dissipation rate of PYR residues was recorded as a function of storage conditions. The fungicide efficacy against green and blue molds caused by Penicillium digitatum and Penicillium italicum, respectively, was evaluated on different citrus varieties following the fungicide application at 20 or 50 degrees C. Residue levels of PYR in Salustiana oranges were significantly correlated with the fungicide dosage, but residue concentrations were notably higher (ca. 13-19-fold) after treatment at 50 degrees C as compared to treatments at 20 degrees C. After treatment at temperatures ranging from 20 to 60 degrees C, PYR and IMZ residues in Salustiana oranges were significantly correlated with dip temperatures. Dissipation rates of PYR during storage were negligible in both Salustiana and Tarocco oranges. Results obtained on wounded, noninoculated Miho satsumas revealed that when treatments were performed at 50 degrees C, PYR or IMZ concentrations needed to achieve the complete control of decay were 8- and 16-fold less than by treatment at 20 degrees C. When fruits were inoculated with either P. digitatum or P. italicum, the application of 400 mg L(-1) PYR at 20 degrees C or 100 mg L(-1) PYR at 50 degrees C similarly reduced green and blue mold development. These results were corroborated by storage trials on Marsh grapefruits and Tarocco oranges. The lowest concentration of PYR required to achieve almost total protection of the fruit against decay accounted for 100 mg L(-1) at 50 degrees C and 400 mg L(-1) at 20 degrees C, respectively. Treatments did not affect fruit external appearance, flavor, and taste. It is concluded that postharvest PYR treatment represents an effective option to control green and blue mold in citrus fruit and that integration of fungicide applications and hot water dips may reduce the possibility of selecting fungicide-resistant populations of the pathogen, as a consequence of increased effectiveness of the treatment.  相似文献   
8.
The present study investigated the influence of a hot water dip (HWD) for 2 min at 50 degrees C, a standard and effective treatment for postharvest decay control of citrus fruit, on the nutritional and health-related properties of kumquats. The results show that most of the parameters examined, including titratable acidity, soluble solids content, maturity index, glucose, fructose, sucrose, ascorbic acid, dehydroascorbic acid, alpha- and gamma-tocopherols, beta-carotene, zeaxantin, rhoifolin, and antioxidant activity, were not significantly affected by treatment. The levels of beta-cryptoxanthin, narirutin, and total flavonoids increased after HWD, whereas lutein and total phenols decreased. The concentration of the essential oil and the relative percentage of the individual components of the essential oil were not affected by HWD except for the minor compound p-menta-1,5-dien-1-ol, which increased after HWD. After storage, lower levels of glucose, total sugars, beta-carotene, beta-cryptoxanthin and lutein were recorded in HWD fruit. A decrease in antioxidant activity and increases in alpha-tocopherol and total vitamin E were found both in control and HWD fruit. The influence of HWD at 50 degrees C for 2 min on individual nutraceuticals and health-related properties was thus generally low and may depend on storage conditions.  相似文献   
9.
The efficacy of thiabendazole (TBZ) to control postharvest decay caused by Penicillium digitatum of citrus fruit can be enhanced by co-application with sodium bicarbonate (SBC) and/or heat treatment. The impact of these treatments was investigated in citrus fruit, as a function of TBZ and SBC concentration and temperature, and were related to the amount of TBZ residues in fruit (total residues), in fruit surface, in the cuticular wax, and in the inner fruit. The residue levels of TBZ were determined in 'Valencia' oranges following a 1 min dip in an aqueous mixture of SBC at 0.5, 1, or 2 wt %/vol and TBZ at 600 or 400 mg/L (active ingredient, a.i.) at 20 or 40 degrees C and after 0 and 20 days at 17 degrees C and 90% relative humidity. The influence of SBC and heat on the TBZ residue concentration on the fruit surface, in cuticular wax, and on the inner cuticle tissue was determined in 'Salustiana' oranges after a 1 or 3 min dip in TBZ alone at 600 mg/L and 20 or 50 degrees C or for 1 min in TBZ at 600 mg/L and SBC at 2% and 20 degrees C. The efficacy of heat treatments with water, SBC, and TBZ, applied separately or in combination, was investigated on artificially inoculated 'Nova' mandarins and 'Valencia' oranges for the control of postharvest green mold caused by a TBZ-sensitive (TBZ-s) or TBZ-resistant (TBZ-r) isolate of P. digitatum. The residue levels of TBZ in fruit, evaluated as total residues, were not affected by the co-application of SBC in most samples. While TBZ residues in the fruit surface were not significantly affected by the dip temperature or by co-application of SBC, the rates of diffusion and penetration of TBZ into cuticular wax markedly increased in the presence of SBC or when TBZ was applied in combination with heat. TBZ residues in the inner tissue of fruits treated at 20 degrees C were not dependent upon the dip time or by the presence of SBC and were similar to those found in fruit treated with TBZ at 50 degrees C for 1 min, whereas significantly higher values were recorded in samples treated with TBZ at 50 degrees C for 3 min. When TBZ at 600 mg/L and 20 degrees C was applied in the presence of SBC at concentrations of 1-2 or 0.5-2%, it effectively reduced decay caused by the TBZ-resistant isolate of green mold in 'Nova' mandarins and 'Valencia' oranges. This treatment was also significantly more effective than TBZ alone to control green mold caused by a TBZ-s isolate in 'Valencia' oranges. The combination with SBC and mild heat (40 degrees C) and TBZ at 400 mg/L generally improved the control of a TBZ-r isolate of green mold with respect to the combined treatment at 20 degrees C. TBZ efficacy was also improved when applied at reduced rates (200 mg/L) and 50 degrees C, significantly suppressing green mold caused by a TBZ-s isolate of P. digitatum and effectively controlling a TBZ-r isolate. The rate of weight loss of 'Valencia' oranges was significantly increased by SBC treatment and was positively dependent upon the concentration of SBC used in the treatment, while the temperature of the treatment solution had little influence on later weight loss.  相似文献   
10.
Cv. Star Ruby grapefruit (Citrus paradisi Macf.) were subjected to a 3-min dip in water at room temperature (20 degrees C) or at 50 degrees C with or without 25, 50, or 100 mg/L azoxystrobin (AZX). Then, the fruits were subjected to cold quarantine at 2 degrees C and 90-95% relative humidity (RH) for 3 weeks and then stored for 5 weeks at 8 degrees C and approximately 85% RH and for another 2 weeks at 20 degrees C and 80% RH to simulate a 2-week marketing period (SMP). No AZX residues were detected in the albedo and pulp following treatments at 20 or 50 degrees C, the total amount of residues being recovered from the flavedo tissue. There was a relationship between the AZX uptake in fruit and the amount of fungicide employed at 20 or 50 degrees C. When AZX was applied to the fruit at 25 mg/L at 20 degrees C, the residue level averaged 0.11 mg/kg (active ingredient, whole fruit basis). This residue concentration increased by 50 and 75% when the application rate increased from 25 to 50 or 100 mg/L, respectively. A similar pattern of accumulation was detected in fruit subjected to treatments at 50 degrees C. However, treatments at 50 degrees C produced residue levels higher than the treatments at 20 degrees C, with increases ranging from 63 to 84%, for the same concentration. Storage conditions did not affect the amount of AZX residues in the fruit. Treatment at 50 or 100 mg/L at 20 degrees C reduced the incidence of moderate to severe chilling injury (CI). Water dips at 50 degrees C reduced the incidence and severity of CI to a very low extent, with no additional advantages when hot water was used in combination with AZX. Treatments with 50 or 100 mg/L of AZX at 20 degrees C produced beneficial effects in decay control similar to those of 25 mg/L AZX at 50 degrees C or hot water alone. Better results were achieved with 50 or 100 AZX at 50 degrees C, providing complete control of decay during cold storage and with negligible decay after SMP. It was concluded that when AZX was applied at 50 degrees C, low doses of fungicide and minimal residue levels in fruit were required to control the postharvest decay of grapefruit. This treatment does not impair fruit quality and offers very interesting prospects for large scale application, due to the reduced potential toxicity of AZX to nontarget organisms and to the environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号