首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
农学   1篇
植物保护   4篇
  2000年   2篇
  1998年   1篇
  1997年   1篇
  1992年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
Fusarium oxysporum f.sp. gladioli (FOG) race 1 infects both large- and small-flowered Gladiolus cultivars. Race 2 isolates infect only small-flowered cultivars but can be present as epiphytes on large-flowered plants. When 160 arbitrary 10-mer oligonucleotide primers were tested on FOG by PCR to find RAPD markers specific for race 1, the RAPD primer G12 amplified two discriminating DNA fragments, AB (609 bp) and EF (1196 bp), in race 1 isolates only. Both fragments were cloned and sequenced. Two pairs of race 1-specific primers for multiplex PCR were designed. Tests of 112 F. oxysporum isolates by PCR showed that, in almost all cases, race 1 isolates of vegetative compatibility group 0340 could be distinguished with these primers. Seven putative race 1 isolates did not react in multiplex PCR; hybridization studies with labelled AB and EF DNA fragments showed that these isolates belong to separate groups. A bioassay was developed to detect corms that were latently infected with FOG race 1. Gladiolus corms were homogenized and incubated for 5 days at 28°C in a semiselective medium to induce growth of Fusarium . Cultivated mycelium was isolated and subjected to the developed multiplex PCR after standard DNA isolation or disruption by microwave treatment.  相似文献   
2.
Isolates of Fusarium oxysporum from lily were screened for pathogenicity, vegetative compatibility and DNA restriction fragment length polymorphisms, and compared to reference isolates of F. oxysporum f.sp. gladioli and F. oxysporum f.sp. tulipae to justify the distinction of F. oxysporum f.sp. lilii. Twenty-four isolates from different locations in The Netherlands (18 isolates), Italy (4 isolates), Poland and the United States (1 isolate each) shared unique RFLP patterns with probes D4 and pFOM7, while hybridization did not occur with a third probe (F9). Except for a self-incompatible isolate, these 24 isolates all belonged to a single vegetative compatibility group (VCG 0190). Isolates belonging to VCG 0190 were highly pathogenic to lily, but not to gladiolus or tulip, except for a single nonpathogenic isolate. Six saprophytic isolates of F. oxysporum from lily were nonpathogenic or only slightly aggressive to lily, gladiolus and tulip, belonged to unique VCGs and had distinct RFLP patterns. Three pathogenic isolates previously considered to belong to F. oxysporum f.sp. lilii were identified as F. proliferatum var. minus; all three belonged to the same VCG and shared unique RFLP patterns. These three isolates were moderately pathogenic to lily and nonpathogenic to gladiolus and tulip. The reference isolates of F. oxysporum f.sp. tulipae were pathogenic to tulip, but not to lily and gladiolus; they shared a distinct RFLP pattern, different from those encountered among pathogenic and saprophytic isolates from lily, and formed a separate new VCG (VCG 0230). Reference isolates of F. oxysporum f.sp. gladioli belonging to VCG 0340 proved pathogenic to both gladiolus and lily, but not to tulip. These isolates, as well as isolates belonging to VCGs 0341, 0342 and 0343 of F. oxysporum f.sp. gladioli, had RFLP patterns different from those encountered among the isolates from lily or tulip. These findings identify F. oxysporum f.sp. lilii as a single clonal lineage, distinct from F. oxysporum f.sp. gladioli and f.sp. tulipae.  相似文献   
3.
ABSTRACT The monophyletic origin of host-specific taxa in the plant-pathogenic Fusarium oxysporum complex was tested by constructing nuclear and mitochondrial gene genealogies and amplified fragment length polymorphism (AFLP)-based phylogenies for 89 strains representing the known genetic and pathogenic diversity in 8 formae speciales associated with wilt diseases and root and bulb rot. We included strains from clonal lineages of F. oxysporum f. spp. asparagi, dianthi, gladioli, lilii, lini, opuntiarum, spinaciae, and tulipae. Putatively nonpathogenic strains from carnation and lily were included and a reference strain from each of the three main clades identified previously in the F. oxysporum complex; sequences from related species were used as outgroups. DNA sequences from the nuclear translation elongation factor 1alpha and the mitochondrial small subunit (mtSSU) ribosomal RNA genes were combined for phylogenetic analysis. Strains in vegetative compatibility groups (VCGs) shared identical sequences and AFLP profiles, supporting the monophyly of the two single-VCG formae speciales, lilii and tulipae. Identical genotypes were also found for the three VCGs in F. oxysporum f. sp. spinaciae. In contrast, multiple evolutionary origins were apparent for F. oxysporum f. spp. asparagi, dianthi, gladioli, lini, and opuntiarum, although different VCGs within each of these formae speciales often clustered close together or shared identical EF-1alpha and mtSSU rDNA haplotypes. Kishino-Hasegawa analyses of constraints forcing the monophyly of these formae speciales supported the exclusive origin of F. oxysporum f. sp. opuntiarum but not the monophyly of F. oxysporum f. spp. asparagi, dianthi, gladioli, and lini. Most of the putatively nonpathogenic strains from carnation and lily, representing unique VCGs, were unrelated to F. oxysporum f. spp. dianthi and lilii, respectively. Putatively nonpathogenic or rot-inducing strains did not form exclusive groups within the molecular phylogeny. Parsimony analyses of AFLP fingerprint data supported the gene genealogy-based phylogram; however, AFLP-based phylogenies were considerably more homoplasious than the gene genealogies. The predictive value of the forma specialis naming system within the F. oxysporum complex is questioned.  相似文献   
4.
The pathogenicity and vegetative compatibility of mainly Dutch isolates ofFusarium oxysporum collected from diseased gladioli and other Iridaceae were investigated. Based on their pathogenicity to two differential gladiolus cultivars, the isolates could tentatively be divided into two races. All self-compatible isolates ofFusarium oxysporum f.sp.gladioli belonged to one of three distinct vegetative compatibility groups, VCG 0340, 0341 or 0342, and were incompatible with isolates that were not pathogenic to gladiolus. Isolates of one of the two races were restricted to one VCG while isolates of the other race were present in all three VCGs.  相似文献   
5.
A test to select Fusarium resistant seedlings of Gladiolus is described. Seedlings of 37 populations, obtained from an incomplete diallel between eight parents with different levels of Fusarium resistance, were used. Significant differences in Fusarium infection between and within populations were detected. Most of the descendants selected had a resistant G. dalenii genotype as one of the parents. The resistance level of the parents was associated with the general combining ability for Fusarium resistance based on the seedling test. Implications for resistance breeding are discussed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号