首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
植物保护   6篇
  1997年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
One major gene for resistance to isolate WYR 85-22 of race 6E0 of Puccinia striiformis was identified by genetic analysis of the differential cultivars Heines Peko, Strubes Dickkopf and Heines VII. This gene was different from Yr2 Yr6 already identified in Heines Peko ( Yr2 Yr6 ) and Heines VII ( Yr2 ), was allelic in the three cultivars and also to a gene expressed in the other differentials Reichersberg 42 ( Yr7 ) and Clement ( Yr9 ). In Heines Peko, Strubes Dickkopf and Heines VII, a minor gene was also postulated, which, it is proposed, gave only a low level of resistance by itself but strengthened the expression of the major gene when the latter was homozygous or heterozygous. The genetics of the resistance was analysed using six resistance classes and applying multidimensional analyses. The number of resistance genes was hypothesized using data from F3 families from crosses between the three differentials and the cultivar Heines Kolben, which is susceptible to this race.  相似文献   
2.
The epidemic simulator EPIMUL was modified and used to study how induced resistance affected the development of epidemics in host mixtures. In the model, induced resistance resulted from the interaction of host tissue with avirulent spores and caused a reduction in the efficacy of virulent spores deposited afterwards. We denned three parameters to describe induced resistance: the level of protection, defined as the magnitude of reduction in the virulent spore efficacy for infecting host tissue; the host surface area protected by an interaction with one avirulent spore; and the duration of protection of the host tissue, in days. In our simulations, induced resistance slowed the epidemics and gave better disease control in the mixtures, even if protection lasted for only 2 days. The disease reduction in the mixture attributable to induced resistance was approximately proportional to the level of protection. The effect of induced resistance increased as the protected area increased. Epidemics were virtually unaffected by induced resistance restricted to the infection site, but the effect of induced resistance initially increased rapidly as larger areas were protected. There was little further gain as the protected area increased from 2·6% to 26%. The influence of induced resistance was reduced when the interactions between virulent and avirulent pathogens were reduced.  相似文献   
3.
The evolution of race patterns in three French regional populations of the barley powdery mildew pathogen Erysiphe graminis f.sp. hordei over a 5-year period showed rapid adaptation to newly introduced host resistance genes. In all three regions, the main change consisted of the replacement of initially abundant races by pathotypes differing markedly from them by their virulence gene combinations. This explained the increase in diversity during the first 3 years of the survey, when the second group of pathotypes became more common in the populations, and its subsequent decrease due to the decline of the first group of races. The mean number of virulence genes per isolate did not vary noticeably over time in the three populations, remaining at about four out of 12 genes tested. However, the distribution of the isolates into virulence complexity classes was greatly modified, fitting a binomial distribution by the end of the study, although significant deviations were apparent in the first 2 years (1986 and 1987). The data indicate that selection, migration and recombination are the most important factors shaping race structure and evolution in powdery mildew populations, and that mutation is of limited significance. No convincing evidence was obtained for the existence of stabilizing selection sensu Vanderplank as the mechanism limiting virulence complexity. Implications regarding spatial and temporal deployment of race-specific resistance genes to control powdery mildew are discussed.  相似文献   
4.
Genetic data showed that a common gene was present in the three differential wheat cultivars Heines VII ( Yr2 ), Heines Peko ( Yr2, Yr6 ) and Heines Kolben ( Yr6 ) expressed against the race 109E9 of Puccinia striiformis which possesses virulence for Yr6 and avirulence for Yr2 . This supported the hypothesis that Heines Kolben carries the gene Yr2 in addition to Yr6 for resistance to yellow rust in a genetic background in which Yr2 is weakly expressed in seedlings. F1, F2 and F3 progenies from the cross Heines Kolben × Peragis confirmed the monogenic segregation of Yr2 in Heines Kolben and demonstrated the variation of its expression with environmental conditions.  相似文献   
5.
Lesion growth varies among foliar parasites and in order to study the effect of lesion growth on the efficacy of host mixtures to control epidemics, we altered the epidemic simulator Epimul by integrating a lesion growth function into the model. A theoretical study was performed by simulating epidemics caused by parasites with different lesion growth rates, spore dispersal gradients and multiplication rates. We found that increases in lesion growth rates resulted in large decreases in the effectiveness of mixtures for disease control and interacted strongly with parasite multiplication rate and spore dispersal gradient. The decline in mixture efficacy for epidemics with high lesion growth rates was reduced when parasite multiplication rate was higher and spore dispersal gradient steeper. Our results suggested that the lower number of infections on susceptible plants in the mixture as a result of inoculum loss on resistant hosts was partially compensated by lesion growth.  相似文献   
6.
Airborne conidia of Erysiphe graminis f.sp. hordei were sampled in three regions and a single locality in the northern part of France for 2 years. Sampling was carried out in early spring, in late spring and in autumn, in order to separate the effects of winter barley cultivars, carrying few specific resistance alleles, and of spring barley cultivars, carrying diverse resistance alleles, on the structure of the pathogen population. Although complex pathotypes with three to 10 virulences were selected by spring cultivars, simple pathotypes, including a pathotype with the single unnecessary virulence allele Va22 , which formed a clear majority of the samples, remained dominant in early spring, when winter but not spring cultivars were growing. In early spring, simple pathotypes were more prevalent in the north, where the winter cultivars represented 90% of the barley acreage, than in the east, where winter cultivars represented 65%. In the west, the frequency of simple pathotypes was limited compared to the north, possibly because of the resistance allele Mlg in winter cultivars. The high frequency of simple pathotypes in early spring could be explained by a differential adaptation between simple and complex pathotypes or by delayed epidemics on spring cultivars compared to winter cultivars.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号