首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  1篇
植物保护   1篇
  2013年   1篇
  2008年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
The Cyprinus carpio fingerlings on exposure to lethal (1 mg/L) and sub lethal concentrations (0.066 mg/L) of sodium cyanide showed inhibition in the activity of catalase. The disruption of catalase activity in freshwater fish, C. carpio is demonstrated in the present study using UV–visible spectrophotometer at 240 nm using hydrogen peroxide as a substrate. It suggests toxic effects of sodium cyanide and consequent accumulation of hydrogen peroxide in the functionally different tissues namely, liver, gill, muscle and brain. This might lead to cellular damages, and create widespread physiological disturbance. The results suggest that catalase activity can be a good diagnostic tool for sodium cyanide toxicity in biomonitoring programme.  相似文献   
2.
An investigation was initiated to examine the effects of nanoscale zinc oxide particles on plant growth and development. In view of the widespread cultivation of peanut in India and in other parts of the globe and in view of the potential influence of zinc on its growth, this plant was chosen as the model system. Peanut seeds were separately treated with different concentrations of nanoscale zinc oxide (ZnO) and chelated bulk zinc sulfate (ZnSO4) suspensions (a common zinc supplement), respectively and the effect this treatment had on seed germination, seedling vigor, plant growth, flowering, chlorophyll content, pod yield and root growth were studied. Treatment of nanoscale ZnO (25 nm mean particle size) at 1000 ppm concentration promoted both seed germination and seedling vigor and in turn showed early establishment in soil manifested by early flowering and higher leaf chlorophyll content. These particles proved effective in increasing stem and root growth. Pod yield per plant was 34% higher compared to chelated bulk ZnSO4. Consequently, a field experiment was conducted during Rabi seasons of 2008–2009 and 2009–2010 with the foliar application of nanoscale ZnO particles at 15 times lower dose compared to the chelated ZnSO4 recommended and we recorded 29.5% and 26.3% higher pod yield, respectively, compared to chelated ZnSO4. The inhibitory effect with higher nanoparticle concentration (2000 ppm) reveals the need for judicious usage of these particles in such applications. This is the first report on the effect of nanoscale particles on peanut growth and yield.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号