首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2篇
植物保护   1篇
  2011年   2篇
  2008年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
AIDS and influenza are viral pandemics and remain one of the leading causes of human deaths worldwide. The increasing resistance of these diseases to synthetic drugs demands the search for novel compounds from plant-based sources. In this regard, the leaves and rhizomes of Alpinia zerumbet, a traditionally important economic plant in Okinawa, were investigated for activity against HIV-1 integrase (IN) and neuraminidase (NA). The aqueous extracts of leaves and rhizomes had IN inhibitory activity with IC(50) values of 30 and 188 μg/mL, whereas against NA they showed 50% inhibition at concentrations of 43 and 57 μg/mL, respectively. 5,6-Dehydrokawain (DK), dihydro-5,6-dehydrokawain (DDK), and 8(17),12-labdadiene-15,16-dial (labdadiene) were isolated from the rhizomes and were tested for enzyme inhibitions. DK and DDK strongly inhibited IN with IC(50) of 4.4 and 3.6 μg/mL, respectively. Against NA, DK, DDK, and labdadiene exhibited mixed type of inhibition with respective IC(50) values of 25.5, 24.6, and 36.6 μM and K(i) values ranging from 0.3 to 2.8 μM. It was found that DDK is a slow and time-dependent reversible inhibitor of NA, probably with a methoxy group as its functionally active site. These results suggest that alpinia could be used as a source of bioactive compounds against IN and NA and that DK and DDK may have possibilities in the design of drugs against these viral diseases.  相似文献   
2.
Neuraminidase is a rational target for influenza inhibition, and the search for neuraminidase inhibitors has been intensified. Mimosine, a nonprotein amino acid, was for the first time identified as a neuraminidase inhibitor with an IC(50) of 9.8 ± 0.2 μM. It was found that mimosine had slow, time-dependent competitive inhibition against the neuraminidase. Furthermore, a small library of mimosine tetrapeptides (M-A(1)-A(2)-A(3)) was synthesized by solid-phase synthesis and was assayed to evaluate their neuraminidase and tyrosinase inhibitory properties. Most of the tetrapeptides showed better activities than mimosine. Mimosine-FFY was the best compound, and it exhibited 50% neuraminidase inhibition at a low micromolar range of 1.8 ± 0.2 μM, whereas for tyrosinase inhibition, it had an IC(50) of 18.3 ± 0.5 μM. The kinetic studies showed that all of the synthesized peptides inhibited neuraminidase noncompetitively with K(i) values ranging from 1.9 -to 7.2 μM. These results suggest that mimosine could be used as a source of bioactive compounds and may have possibilities in the design of drugs as neuraminidase and tyrosinase inhibitors.  相似文献   
3.
Selection of maize (Zea mays L.) cell lines resistant to glufosinate was carried out using cell suspension cultures induced from an embryo. The cell suspension was cultured on MS liquid medium supplemented with 150 mg/l asparagine, 1 mg/l thiamine, 3 mg/l 2,4-D and 2% sucrose (pH 5.8) and treated with different concentrations of glufosinate herbicide. In vitro selection from these cell suspension cultures resulted in the identification of a maize cell line resistant to glufosinate. The resistance index of the resistant cell line was 120-fold more than the normal cells. Moreover, the resistance of the cell line remained stable for at least 6 months when kept in herbicide-free medium. Glutamine synthetase (GS) activity in the resistant cells was higher than the normal cells by about 2.30-fold at 5 days after treatment of 10−6 M glufosinate. The low sensitivity of GS in resistant cells resulted in the non-inhibition of the enzyme activity, hence, the high resistance of the cell line to the herbicide. Using RT-PCR to amplify the GS mRNA, a substitution of 12 nucleotides was observed in resistant maize cells compared to that of normal cells. Conceptual translation of this sequence shows a substitution of 10 amino acids in the GS protein sequence from Genbank database of NCBI. The GS gene sequence of the newly identified glufosinate-resistant maize cell was submitted to Genbank and was given the Accession No. AY339214. The results of this study indicate a functional role of mutation in the evolution of glufosinate-resistant plants. It also supports the view that glufosinate resistance in plants was primarily due to the alteration of GS making it less sensitive to inhibitory effect of the herbicide.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号