首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
林业   2篇
  21篇
综合类   1篇
园艺   1篇
  2020年   5篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2013年   6篇
  2012年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2005年   4篇
  2004年   1篇
排序方式: 共有25条查询结果,搜索用时 31 毫秒
1.
ABSTRACT

This study aimed at understanding whether and how long-term organic rice farming affects soil carbon (C) and nitrogen (N) stocks and their mineralization potentials in submerged rice paddies in Tochigi, Japan. An incubation experiment was carried out to assess the impacts of internal nutrient cycling after organic farming (OF) for 4–5 years (4OF), 8–9 years (8OF), and 12 years (12OF), compared with a conventional rice field (CF). Soil samples were collected at 0–15 cm and 15–20 cm in flooded rice fields after harvest in October 2013. pH and bulk density at 0–15 cm were significantly lower in 12OF fields than in CF fields (by 0.22 unit pH and 17.5%, respectively). Compared with CF, 12OF fields showed significant differences in soil organic carbon (SOC) and total nitrogen (TN), but 4OF and 8OF fields did not. In 8OF fields, the C decomposition (Co) and N mineralization (No) potentials were significantly higher (by 34.0% and 35.6%, respectively, at 0–15 cm, and by 67.1% and 24.5% at 15–20 cm) than in CF fields. Similarly, in 8OF fields at 0–15 cm, the Co:SOC and No:TN ratios were 19.8% and 23.2% higher, respectively, than in CF fields. Co, No, Co:SOC, and No:TN in 12OF fields were higher than those in CF fields, demonstrating the effects of prolonged organic rice farming. Additionally, in 12OF fields, C and N stocks were significantly higher (by 15.5% and 17.2%, respectively, at 0–15 cm, and by 4.8% and 12.1% at 15–20 cm) than in CF fields. Our findings suggest that long-term organic rice farming increases soil C and N stocks as well as C and N mineralization in Japanese Andosols.  相似文献   
2.
ABSTRACT

Hot-water- and water-extractable organic matter were obtained from soil samples collected from a rice paddy 31 years after the start of a long-term rice experiment in Yamagata, Japan. Specifically, hot-water-extractable organic carbon and nitrogen (HWEOC and HWEON) were obtained by extraction at 80°C for 16 h, and water-extractable organic carbon and nitrogen (WEOC and WEON) were obtained by extraction at room temperature. The soil samples were collected from surface (0–15 cm) and subsurface (15–25 cm) layers of five plots that had been treated with inorganic fertilizers alone or with inorganic fertilizers plus organic matter, as follows: PK, NPK, NPK plus rice straw (RS), NPK plus rice straw compost (CM1), and NPK plus a high dose of rice straw compost (CM3). The soil/water ratio was 1:10 for both extraction temperatures. We found that the organic carbon and total nitrogen contents of the bulk soils were highly correlated with the extractable organic carbon and nitrogen contents regardless of extraction temperature, and the extractable organic carbon and nitrogen contents were higher in the plots that were treated with inorganic fertilizers plus organic matter than in the PK and NPK plots. The HWEOC and WEOC δ13C values ranged from ?28.2% to ?26.4% and were similar to the values for the applied rice straw and rice straw compost. There were no correlations between the HWEOC or WEOC δ13C values and the amounts of HWEOC or WEOC. The δ13C values of the bulk soils ranged from ?25.7% to ?23.2% and were lower for the RS and CM plots than for the PK and NPK plots. These results indicate that HWEOC and WEOC originated mainly from rice plants and the applied organic matter rather than from the indigenous soil organic matter. The significant positive correlations between the amounts of HWEOC and HWEON and the amount of available nitrogen (P < 0.001) imply that extractable organic matter can be used as an index for soil fertility in this long-term experiment. We concluded that the applied organic matter decomposed more rapidly than the indigenous soil organic matter and affected WEOC δ13C values and amounts.  相似文献   
3.
Hirayama  Hidetake  Tomita  Mizuki  Hara  Keitarou 《Landscape Ecology》2020,35(7):1519-1530
Landscape Ecology - In March of 2011 a huge tsunami devastated forest habitats along the coast of Sendai Bay in northeastern Japan. Evaluation and monitoring of the changes in habitat connectivity...  相似文献   
4.
5.
ABSTRACT

Our earlier study demonstrated that the landrace of Japonica rice, Akamai exhibits low-P (phosphorous) tolerance mechanisms compared to the conventional type cultivar, Koshihikari. The present study examined the genotypic difference of yield, plasticity of root growth, and internal utilization of acquired P (allocation pattern of biomass and P among different vegetative and reproductive organs) of two contrasting cultivars in response to P-deficiency. Each cultivar was grown until maturity with (+P) and without (–P) P supply in pots (two plants per pot) filled with 15 kg of Regosol soil. Grain yield and yield components were determined along with biomass and P accumulation in different vegetative and reproductive organs. To assess the plasticity of root growth, the soil column in the pot was divided into two equal portions (upper and lower soil layers) in which the root dry weight and length were measured separately. Among the investigated yield components, the number of filled grains per panicle was the key parameter determining genotypic differences of grain yield of two cultivars. P-deficiency had a marked influence on grain filling of Koshihikari where the filled grain percentage under –P condition was reduced by 29% compared to that under +P condition. However, the respective reduction for Akamai was only 11%. Low-P tolerance ability of Akamai imparts a yield advantage over Koshihikari under P-deficient conditions because of the production of the higher number of filled grains per panicle. Akamai explored both upper and lower soil layers of the pot more efficiently in search of P through greater root biomass and length. Akamai grown under P-deficient conditions had remarkably lower P concentrations in less active vegetative tissues (partly and fully senesced leaves) than those of Koshihikari; whereas, more active organs (green leaves and panicles) contained a greater amount of P. Akamai’s higher plasticity to external P availability can be a genetic resource for developing low-P tolerant, high-yielding rice genotypes suitable for predicted future P-limited environments.  相似文献   
6.
ABSTRACT

Root exudate is derived from plant metabolites and its composition is affected by plant nutrient status. A deficiency of mineral nutrients, such as nitrogen (N) and phosphorus (P), strongly affects the type and amount of plant metabolites. We applied a metabolite profiling technique to investigate root exudates of rice plants under N and P deficiency. Oryza sativa was grown in culture solution containing two N levels (0 and 60 mg N L?1) or two P levels (0 and 8 mg P L?1). Shoot extracts, root extracts, and root exudates were obtained from the rice plants 5 and 15 days after transplanting and their metabolites were determined by capillary electrophoresis/time-of-flight mass spectrometry. Shoot N concentration and dry weight of rice plants grown at ?N level were lower than those of plants grown at +N level. Shoot P concentration and dry weight of rice plants grown at ?P level were lower than those of plants grown at +P level. One hundred and thirty-two, 127, and 98 metabolites were identified in shoot extracts, root extracts, and root exudates, respectively, at the two N levels. One hundred and thirty-two, 128, and 99 metabolites were identified in shoot extracts, root extracts, and root exudates, respectively, at the two P levels. Seventy-seven percent of the metabolites were exuded to the rhizosphere. The concentrations of betaine, gamma-aminobutyric acid, and glutarate in root exudates were higher at both ?N and ?P levels than at their respective high levels. The concentration of spermidine in root exudates was lower at both ?N and ?P levels than at their respective high levels. The concentrations of the other metabolites in root exudates were affected differently by plant N or P status. These results suggest that rice roots actively release many metabolites in response to N and P deficiency.  相似文献   
7.

Purpose

The objective of this study was to determine the changes in the main soil chemical properties including pH, electrical conductivity (EC), available phosphorus (P), soil organic carbon (SOC) and total nitrogen (TN) stocks after long-term (31 years) additions of two types of organic matters—rice straw and rice straw compost, combined with NPK fertilizers in single rice paddy in a cold temperate region of Japan.

Materials and methods

A long-term experiment on combined inorganic fertilizers and organic matters in paddy rice cultivation began in May 1982 in Yamagata, northeastern Japan. After the 31st harvest, soil samples were collected from five treatments [(1) PK, (2) NPK, (3) NPK + 6 Mg ha?1 rice straw (RS), (4) NPK + 10 Mg ha?1 rice straw compost (CM1), and (5) NPK + 30 Mg ha?1 rice straw compost (CM3)] at five soil depths (0–5, 5–10, 10–15, 15–20, and 20–25 cm). Soil chemical properties of pH, EC, available P, SOC, and TN were analyzed.

Results and discussion

The pH decreased significantly only at the higher compost rate of 30 Mg ha?1, while EC increased in all the organic matter treatments. Available P significantly increased in the CM1 and CM3 treatments by 55.1 and 86.4 %. The amounts of SOC stock increased by 67.2, 21.4, and 8.6 %, and soil TN stock by 64.1, 20.2, and 8.5 % in CM3, RS, and CM1, respectively, compared to NPK treatment.

Conclusions

Significant changes in soil properties were observed after 31 years of organic matter applications with reference to PK- and NPK-fertilized rice paddy soils. A significant decrease in pH was observed with the application of a high rate (30 Mg ha?1) of rice straw compost but not with the conventional rate of 10 Mg ha?1. However, EC increased significantly relative to that of the PK- and NPK-fertilized plots in all the organic matter treatments. Available P significantly increased in the CM1 and CM3 treatments by 55.1 and 86.4 %. The amounts of SOC stock expressed as a percentage of total C applied to the soil were higher from 10 Mg ha?1 compost (28.7 %) than that from 6 Mg ha?1 rice straw (17.4 %), indicating a more effective soil organic C accumulation from rice straw compost than that from original rice straw.
  相似文献   
8.
Increased phosphate (P) uptake in plants by arbuscular mycorrhizal (AM) fungi is thought to depend mainly on the extension of external hyphae into soil. On the other hand, it is known that the hyphae of some kinds of ectomycorrhizal fungi release organic acids into soil and that they dissolve the insoluble inorganic P. This study collected hyphal exudates of AM fungi within compartmentalized pot culture and clarified their ability to solubilize insoluble inorganic P. Sterilized Andisol was packed in pots that were separated into root and hyphal compartments with a nylon net of 30 μm pore size. Seedlings of Allium cepa inoculated with AM fungi, Gigaspora margarita, or Glomus etunicatum were grown. Control pots were not inoculated. Mullite ceramic tubes were buried in the soil of each compartment and soil solution was collected. The anionic fraction of the soil solution was incubated with iron phosphate (4 mg FePO4 in 1 mL of 0.4 acetate buffer). Solubilized P was measured. The AM colonization of plants inoculated with G. margarita and G. etunicatum was 86% and 54%, respectively. Adhesion of external hyphae was observed on the surface of the mullite ceramic tubes buried in soil of the hyphal compartment. Colonization of both fungi increased shoot P uptake and growth. Soil solution collected from the hyphal compartments of both fungi solubilized more P than did that from uninoculated plants. It is suggested that hyphal exudates can contribute to increased P uptake of colonized plants.  相似文献   
9.
We investigated the role of the cell wall and plasma membrane (PM) of root-tip cells in Al tolerance in Al-tolerant and Al-sensitive cultivars of five plant species (rice, maize, pea, wheat, and sorghum). No correlation was found between the differences in Al tolerance and the cation exchange capacity of cell walls isolated from root-tips (0–1 em). Preliminary exposure to Al for 1 h was sufficient to inhibit subsequent root re-elongation in an Al-free solution, and the inhibitory effect was more pronounced in the Al-sensitive cultivars than in the Al-tolerant ones. Together with the inhibition of root re-elongation, the PM of the root-tip cells of all the Al-sensitive cultivars was more permeabilized than that of the Al-tolerant cultivars, based on the FDA-PI fluorescence staining technique. Exposure for 30 min to Al treatment at 100 µM significantly increased the PM permeability of protoplasts isolated from the root-tips for the Al-sensitive pea cultivar placed in a moderately hypotonic medium. Protoplasts from root-tip portions of all the Al-sensitive cultivars took up more Al than those of the Al-tolerant ones when treated with 100 pM Al under isotonic conditions for 30 min. The co-existence of DNP or hypotonic conditions led to a larger increase of Al uptake by the protoplasts from Al-sensitive maize cultivars. These results suggest that Al ions rapidly alter the PM of the root-tip portion in the Al-sensitive cultivars, irrespective of plant species, resulting in an increase of the PM permeability.  相似文献   
10.
The order of aluminum (Al) tolerance in triticale lines (ST2>ST22) after re-elongation in an Al-free 0.2 mM calcium (Ca) solution for 9 h (Ca period) following 1 h pretreatment with 20 μM Al (Al period) agreed with that after 24 h of Al treatment. Permeability of the plasma membrane (PM) of root-tip cells after the Ca period was significantly increased in Al-sensitive ST22. Al was accumulated more heavily in the root-tip portion of ST22 than in that of ST2, although similar amounts of malic and citric acid anions were released from both triticale lines. We established a new system examining lipid permeability using synthesized nylon-2,8 ultrathin and porous capsules trapped previously with 0.1% (w/v) methylene blue solution and coated thereafter with PM lipid isolated from root tips by a newly developed technique. Permeability of the PM lipid measured with time in 0.2 mM Ca with or without 50 μM Al photometrically ( A 680) was significantly greater in Al-sensitive ST22 after 5 min of Al treatment. This is the first report to directly show the primary and early role of PM lipid in Al tolerance in triticale.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号