首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   1篇
林业   4篇
  9篇
  2018年   1篇
  2016年   1篇
  2010年   3篇
  2008年   1篇
  2006年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1995年   2篇
排序方式: 共有13条查询结果,搜索用时 218 毫秒
1.
To determine the relationship between phloem transport and changes in phloem water content, we measured temporal and spatial variations in water content and sucrose, glucose and fructose concentrations in phloem samples and phloem exudates of 70- and 30-year-old Norway spruce trees (Picea abies (L.) Karst.). Large temporal and spatial variations in phloem water content (1.4-2.6 mg mg(dw)(-1)) and phloem total sugar concentration (31-70 mg g(dw)(-1)) paralleled each other (r(2) = 0.83, P < 0.0001 for the temporal profile and r(2) = 0.96, P < 0.008 for the spatial profile), indicating that phloem water content depends on the total amount of sugar to be transferred. Changes in phloem water content were unrelated to changes in bark thickness. Maximum changes in phloem water content calculated from dendrometer readings were only 8-11% of the maximum measured changes in phloem water content, indicating that reversible changes in bark thickness did not reflect changes in internal water relations. We also studied the relationship between xylem sap velocity and changes in bark thickness in 70-year-old trees during summer 1999 and winter 1999-2000. Sap flow occurred sporadically throughout the winter, but there was no relationship between bark shrinkage or swelling and sap velocity. In winter, mean daily xylem sap velocity was significantly correlated with mean daily vapor pressure deficit and air temperature (P < 0.0001, in both cases). Changes in bark thickness corresponded with both short- and long-term changes in relative humidity, in both winter and summer. Under controlled conditions at > 0 degrees C, changes in relative humidity alone caused changes in thickness of boiled bark samples. Because living bark of Norway spruce trees contains large areas with crushed and dead sieve cell zones-up to 24% of the bark is air-filled space-we suggest that this space can compensate for volume changes in living phloem cells independently of total tissue water content. We conclude that changes in bark thickness are not indicative of changes in either phloem water capacitance or xylem sap flow.  相似文献   
2.
To evaluate the pathways and dynamics of inorganic nitrogen (N) deposition in previously N-limited ecosystems, field additions of 15N tracers were conducted in two mountain ecosystems, a forest dominated by Norway spruce (Picea abies) and a nearby meadow, at the Alptal research site in central Switzerland. This site is moderately impacted by N from agricultural and combustion sources, with a bulk atmospheric deposition of 12 kg N ha−1 y−1 equally divided between NH4+ and NO3. Pulses of 15NH4+ and 15NO3 were applied separately as tracers on plots of 2.25 m2. Several ecosystem pools were sampled at short to longer-term intervals (from a few hours to 1 year), above and belowground biomass (excluding trees), litter layer, soil LF horizon (approx. 5-0 cm), A horizon (approx. 0-5 cm) and gleyic B horizon (5-20 cm). Furthermore, extractable inorganic N, and microbial N pools were analysed in the LF and A horizons. Tracer recovery patterns were quite similar in both ecosystems, with most of the tracer retained in the soil pool. At the short-term (up to 1 week), up to 16% of both tracers remained extractable or entered the microbial biomass. However, up to 30% of the added 15NO3 was immobilised just after 1 h, and probably chemically bound to soil organic matter. 16% of the NH4+ tracer was also immobilised within hours, but it is not clear how much was bound to soil organic matter or fixed between layers of illite-type clay. While the extractable and microbial pools lost 15N over time, a long-term increase in 15N was measured in the roots. Otherwise, differences in recovery a few hours after labelling and 1 year later were surprisingly small. Overall, more NO3 tracer than NH4+ tracer was recovered in the soil. This was due to a strong aboveground uptake of the deposited NH4+ by the ground vegetation, especially by mosses.  相似文献   
3.
The elemental concentrations of K, Rb and Cs were determined in needles from individual spruce trees as a function of the needle age class. The concentrations are highest in current year's needles and decrease smoothly in older needles, approaching a constant value. Rb and Cs show similar behaviour, whereas that of K differs in so far as its relative decrease with time is less pronounced. Intra- and intersite variation of the needle concentrations are largest for Cs and smallest for K. Individual trees show a highly significant correlation between the log (Cs) and log (Rb) values. Total soil concentrations were determined at 9 sites with different parent material. Intra- and intersite variations of K are comparable for soils and for needles, whereas those for Rb and Cs are much smaller for soils than for needles. All three elements are correlated in soil samples. There is no close connection between soil and needle concentrations at the various sites. However, the results suggest that needle concentrations of Rb and Cs, but not of K, are strongly dependent on the sorption properties of the associated soils.  相似文献   
4.
5.
Dielectric sensors use electrical permittivity as a proxy for water content. They determine permittivity by using sensor‐type‐specific techniques and calibration functions, and relate it to a volumetric water content. Water potential sensors then translate the water content into a potential based on the sensor‐specific moisture characteristic curve. Dielectric readings are affected by temperature, which may distort hydraulically‐induced changes in soil water content. Methods for the removal of spurious temperature effects are lacking for dielectric water potential sensors. With this study, we aimed to fill this knowledge gap for the dielectric Decagon MPS‐2 and MPS‐6 water potential sensors. We first determined the temperature effect on MPS readings with laboratory experiments in which temperature was cycled between 4 and 26°C in different soil types. We then fitted single empirical equations that compensated for the temperature effect on MPS readings. Finally, we validated temperature‐compensated MPS soil water potentials, and therefore the equations, in a multi‐year field study in two forest soils where hourly data from three sensor models were available, i.e., from MPS‐2, MPS‐6, and a heat capacity sensor (ecoTech pF‐Meter) that is not sensitive to temperature effects. The temperature fluctuation experiments showed that the strongest temperature effects on MPS readings occur under dry conditions and that the MPS sensors themselves are largely responsible for these effects. Likewise, the field‐based validation showed that the MPS readings were highly affected by temperature under dry conditions. Applying a temperature compensation to these readings, using the equations from the temperature fluctuation experiments, resulted in strong correlations near the 1:1 line between data from the MPS and pF‐Meter sensors. Therefore, we recommend using the equations to remove spurious temperature effects from MPS‐2 and MPS‐6 readings in non‐saline soils with water potentials between –100 and –2000 kPa (at 22°C) and temperatures between 4 and 26°C.  相似文献   
6.
In large regions of Europe and eastern North America atmospheric deposition of inorganic nitrogen (N) compounds has greatly increased the natural external supply to forest ecosystems. This leads to N saturation, in which availability of inorganic N is in excess of biological demand and the ecosystem is unable to retain all incoming N. The large-scale experiments of the NITREX project (NITRogen saturation EXperiments) are designed to provide information regarding the patterns and rates of responses of coniferous forest ecosystems to increases in N deposition and the reversibility and recovery of impacted ecosystems following reductions in N deposition.The timing of ecosystem response generally followed a hypothesized cascade of response. In all sites N outputs have responded markedly but to very different degrees within the first three years of treatment. Within this time significant effects on soil processes and on vegetation have only been detected at two sites. This delayed response is explained by the large capacity of the soil system to buffer the increased N supply by microbial immobilization and adsorption. We believe that this concept provides a framework for the evaluation and prediction of the ecosystem response to environmental change.  相似文献   
7.
The responses of nitrogen transformations and nitrate (NO_3 -) leaching to experimentally increased N deposition were studied in forested sub-catchments (1500 m2) with Gleysols in Central Switzerland. The aim was toinvestigate whether the increase in NO3 - leaching,due to elevated N deposition, was hydrologically driven orresulted from N saturation of the forest ecosystem.Three years of continuous N addition at a rate of 30 kgNH4NO3-N ha-1 yr-1 had no effects on bulksoil N, on microbial biomass N, on K2SO4-extractableN concentrations in the soil, and on net nitrification rates.In contrast, N losses from the ecosystem through denitrification and NO3 - leaching increased significantly. Nitrate leaching was 4 kg N ha-1yr-1at an ambient N deposition of 18 kg N ha-1 yr-1.Leaching of NO3 - at elevated N deposition was 8 kg Nha-1 yr-1. Highest NO3 - leaching occurredduring snowmelt. Ammonium was effectively retained within theuppermost centimetres of the soil as shown by the absence ofNH4 + in the soil solution collected with microsuction cups. Quantifying the N fluxes indicated that 80% ofthe added N were retained in the forest ecosystem.Discharge and NO3 - concentrations of the outflow from the sub-catchments responded to rainfall within 30 min. The water chemistry of the sub-catchment outflow showed thatduring storms, a large part of the runoff from this Gleysol derived from precipitation and from water which had interactedonly with the topsoil. This suggests a dominance of near-surface flow and/or preferential transport through this soil. The contact time of the water with the soil matrix wassufficient to retain NH4 +, but insufficient for a complete retention of NO3 -. At this site with soilsclose to water saturation, the increase in NO3 - leaching by 4 kg N ha-1 yr-1 through elevated N inputsappeared to be due to the bypassing of the soil and the rootsystem rather than to a soil-internal N surplus.  相似文献   
8.
Nitrogen (N) deposition exceeds the critical loads for this element in most parts of Switzerland apart from the Alps. At 17 sites (8 broadleaved stands, 8 coniferous stands, and 1 mixed stand) of the Swiss Long-term Forest Ecosystem Research network, we are investigating whether N deposition is associated with the N status of the forest ecosystems. N deposition, assessed from throughfall measurements, was related to the following indicators: (1) nitrate leaching below the rooting zone (measured on a subset of 9 sites); (2) the N nutrition of the forest stand based on foliar analyses (16 sites); and (3) crown defoliation, a non specific indicator of tree vitality (all 17 sites). Nitrate leaching ranging from about 2 to 16 kg N ha−1 a−1 was observed at sites subjected to moderate to high total N deposition (>10 kg ha−1 a−1). The C/N ratio of the soil organic layer, or, when it was not present, of the upper 5 cm of the mineral soil, together with the pool of organic carbon in the soil, played a critical role, as previous studies have also found. In addition, the humus type may need to be considered as well. For instance, little nitrate leaching (<2 kg N ha−1 a−1) was recorded at the Novaggio site, which is subjected to high total N deposition (>30 kg ha−1 a−1) but characterized by a C/N ratio of 24, large organic C stocks, and a moder humus type. Foliar N concentrations correlated with N deposition in both broadleaved and coniferous stands. In half of the coniferous stands, foliar N concentrations were in the deficiency range. Crown defoliation tended to be negatively correlated with N concentrations in the needles. In the majority of the broadleaved stands, foliar N concentrations were in the optimum nutritional range or, on one beech plot with high total N deposition (>25 kg ha−1 a−1), above the optimum values. There was no correlation between the crown defoliation of broadleaved trees and foliar concentrations.  相似文献   
9.
Nitrogen (N) from atmospheric deposition has been shown to be mainly retained in the organic soil layers of temperate forest ecosystems, but the mechanisms and the physico‐chemical fractions involved are still poorly defined. We performed a hot‐acid hydrolysis on 15N‐labelled soil samples collected 1 week, 3 months and 1 year following a single in situ application of either 15NO3 or 15NH4+ in two montane forest ecosystems in Switzerland: Grandvillard (beech forest on a calcareous, well‐drained soil, 650 m above sea level) and Alptal (spruce forest on hydromorphic soil, 1200 m above sea level). After 15NH4+ application, recovery rates in the soil were smaller in Alptal than in Grandvillard through a large rate of absorption by mosses. At both sites, the organic soil layers retained most of the tracers at all three sampling times between 1 week and 1 year. In Grandvillard, the hydrolysable fraction (hydrolysable N : total N) of 15N was on average 79% and thus similar to the hydrolysable fraction of native N. This similarity is probably because of the rapid incorporation of N into organic molecules, followed by stabilization of the recalcitrant N pool through organo‐mineral bonds with soil minerals. In Alptal, the 15N hydrolysable fraction was greater than that of native N, particularly after 15NH4+ application (15N, 84%; native N, 72%). At both sites, 15N and the fraction of hydrolysable native N remained constant between 1 week and 1 year. This shows that both the recalcitrant and the hydrolysable pools are stable in the mid‐ to long‐term. We present arguments indicating that biological recycling through microbes and plants contributes to the stability of the hydrolysable N fraction.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号