首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  6篇
综合类   2篇
畜牧兽医   1篇
  2019年   1篇
  2017年   2篇
  2016年   1篇
  2013年   1篇
  2011年   1篇
  2008年   1篇
  2007年   1篇
  1967年   1篇
排序方式: 共有9条查询结果,搜索用时 31 毫秒
1
1.
2.
Data on the mineralogical composition of clay (<1 μm), fine silt (1–5 μm), medium silt (5–10 μm), and coarser (>10 μm) fractions of meadow solonchakous solonetzes (Calcic Gypsic Salic Stagnic Solonetz (Albic, Siltic, Columnic, Cutanic, Differentic)) developing from loesslike loam and clay in the North Crimean Lowland are presented. Fractions >5 μm constitute nearly 50% of the soil mass and are characterized by the same mineralogical composition in the entire profile; they consist of quartz, plagioclases, potassium feldspars, and micas (biotite and muscovite). The eluvial-illuvial redistribution of clay in the course of solonetzic process is accompanied by changes in the portion of mixed-layer minerals and hydromicas in the upper part of the profile; a larger part of the smectitic phase is transformed into the superdisperse state. In the eluvial SEL horizon and in the illuvial BSN horizon, the clay fraction is impoverished in smectitic phase and enriched in trioctahedral hydromicas. Upon calculation of the content of clay minerals per bulk soil mass, the distribution of mixed-layer minerals is either eluvial, or eluvial-illuvial, whereas the distribution of hydromicas has an illuvial pattern without distinct eluvial minimum in the SEL horizons. The eluvial-illuvial distribution pattern of clay minerals in solonetzes of the North Crimean Lowland is compared with the distribution pattern of clay minerals in solonetzes of the West Siberian Lowland. Coefficients characterizing differentiation of solonetzes by the contents of particular mineral components are suggested.  相似文献   
3.
The materials of article had been reported at the International Symposium "Nutritional and environmental Research in the 21st Century - The value of long-term field experiments", 5-7 June 2002, Bad Lauchstädt and Halle upon Saale. Agrochemical monitoring of the basic landscape components was launched in order to assess human impacts of land-use on the site of Barybino Experimental Station (Moscow Region, clay loam soddy-podzolic soils. 55°30'N, 37° 36' E). The climate is moderate continental, mean annual temperature of 3.8 °C and mean precipitation of 567 mm (1965-1998) at an elevation of 185 m above sea level. A typical soil cover pattern is represented as a complex of soddy-podzolic soils (podzo-luvisols) with excessive surface moistening features manifested differently according to the influence of the micro relief. The study was carried out from 1991 to 2001 in a crop rotation of silo maize, barley, perennial grasses (clover with timothy) and winter wheat, under different systems of fertilization (application of organic as well as mineral fertilizers, plant remedies and their combinations). Agrochemical monitoring let to establish the anthropogenic impacts on the system "soil-nutrients-plant"-environment. Alterations of the landscape components affected by human activities and climate change were estimated. At the site it could be shown that the amount of precipitation, soil properties and type of cultivated crop had mainly influenced migration of the nutrient elements.  相似文献   
4.
A method is developed for creating fluorescent-labeled probes for real-time polymerase chain reaction for the purpose of a quantitative diagnosis of transgenic plants. Methods enabling designing of probes with a minimum initial level of the fluorescent signal are examined and analyzed.  相似文献   
5.
Eurasian Soil Science - The quantitative and qualitative diversity of the clay fraction (&lt;1 µm) from parent materials (BC&nbsp;and C horizons), albic (suprasolonetzic eluvial SEL)...  相似文献   
6.
Samples of a chitin-melanin complex are produced from honeybee corpses and some of their physicochemical characteristics are determined. The interaction of the complexes with radionuclides 233U and 90Sr in solutions is studied. The dependence of the sorption properties of the chitin-melanin complexes with respect to radionuclides on the method of isolating and purifying them is established.  相似文献   
7.
The mineralogy of clay fractions separated from deep low-humus deep-gleyic loamy typical agrochernozems on loess-like loams of the Upper Bug and Dniester uplands in the Central Russian loess province of Ukraine consists of complex disordered interstratifications with the segregation of mica- and smectite-type layers (hereafter, smectite phase), tri- and dioctahedral hydromicas, kaolinite, and chlorite. The distribution of the clay fraction is uniform. The proportions of the layered silicates vary significantly within the profile: a decrease in the content of the smectite phase and a relative increase in the content of hydromicas up the soil profile are recorded. In the upper horizons, the contents of kaolinite and chlorite increase, and some amounts of fine quartz, potassium feldspars, and plagioclases are observed. This tendency is observed in agrochernozems developed on the both Upper Bug and Dniester uplands. The differences include the larger amounts of quartz, potassium feldspars, and plagioclases in the clay material of the Upper Bug Upland, while the contents of the smectite phase in the soil profiles of the areas considered are similar. An analogous mineral association is noted in podzolized agrochernozems on loess-like deposits in the Cis-Carpathian region of the Southern Russian loess province developed on the Prut–Dniester and Syan–Dniester uplands. The distribution of particle-size fractions and the mineralogy of the clay fraction indicate the lithogenic heterogeneity of the soil-forming substrate. When the drifts change, the mineral association of the soils developed within the loess-like deposits gives place to minerals dominated by individual smectite with some mica–smectite inter stratifications, hydromicas, and chlorite.  相似文献   
8.
Properties and mineralogy of fine fractions separated from agrochernozems forming a three-component noncontrasting soil combination in the Kamennaya Steppe have been characterized. The soil cover consists of zooturbated (Haplic Chernozems (Clayic, Aric, Pachic, Calcaric)), migrational-mycelial (Haplic Chernozems (Clayic, Aric, Pachic)), and clay-illuvial (Luvic Chernozems (Clayic, Aric, Pachic)) agrochernozems. All the soils are deeply quasi-gleyed because of periodical groundwater rise. The mineralogy of the fraction <1μm includes irregular mica–smectite interstratifications, di- and trioctahedral hydromicas, imperfect kaolinite, and magnesium–iron chlorite. The profile distribution of these minerals slightly varies depending on the subtype of spot-forming soils. A uniform distribution of clay minerals is observed in zooturbated agrochernozem; a poorly manifested eluvial–illuvial distribution of the smectite phase is observed in the clay-illuvial agrochernozem. The fractions of fine (1–5 μm) and medium (5–10 μm) silt consist of quartz, micas, potassium feldspars, plagioclases, kaolinite, and chlorite. There is no dominant mineral, because the share of each mineral is lower than 35–45%. The silt fractions differ in the quartz-to-mica ratio. The medium silt fraction contains more quartz, and the fine silt fraction contains more micas.  相似文献   
9.
In chernozems developed in the autonomous positions in Moldova, the mineralogy of their silicate component has some features indicative of stronger transformations than those that could be expected for the chernozems formed by the Holocene pedogenesis. The mineralogical profiles testify to the eluvial nature of the main subtypes of chernozems. It is suggested that the revealed changes are not due to the Holocene pedogenesis. According to the probable age of the mineralogical profiles calculated from the volumes of aluminosilicates removed, these profiles originated in the early and middle Late Pleistocene, i.e., about 50 000–120 000 years ago. The effect of forest pedogenesis in the past epochs on the mineralogy of the northern subtypes of chernozems also cannot be excluded. The presented data characterize the chernozems under study as polygenetic soil formations.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号