首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
林业   1篇
综合类   3篇
  2020年   1篇
  2019年   1篇
  2017年   2篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
以福建泉州大坪乡、三明坂面乡和福州福建农林大学茶园为研究对象,使用ICP-MS测定茶园土壤及对应茶树的根、老枝、嫩枝、老叶和嫩叶样品中镉(Cd)和铅(Pb)含量,并对Cd和Pb在茶园土壤—茶树系统中的分布情况以及迁移富集特征进行分析.结果表明:大坪乡、坂面乡和农林大学茶园土壤的Cd和Pb的平均含量分别介于0.022~0.076 mg·kg~(-1)和20.73~65.73 mg·kg~(-1),均未超过《土壤环境质量农用地土壤污染风险管控标准(试行)》(GB 15618—2018)限定值.3个茶园茶叶中Cd和Pb含量分别介于0.003~0.054 mg·kg~(-1)和0.01~4.28 mg·kg~(-1),均低于国家标准限值,表明研究区茶园无Cd和Pb污染.整体而言,Cd和Pb不易向茶树地上部迁移,各茶园Cd和Pb在茶树中的转移系数表现为从上而下递减的趋势,嫩叶的转移系数最小,分别为0.01~0.05和0.01~0.06.此外,各茶园茶树对Cd和Pb的富集能力基本表现为叶枝根,嫩叶富集能力最弱,分别为0.098~1.006和0.009~0.048,且各茶园茶树对Cd的富集能力明显大于Pb.本研究结果可为茶园选址及茶园重金属污染防治提供理论依据.  相似文献   
2.
为了解凋落叶分解前期土壤酶活性对氮沉降的响应,通过室内模拟自然氮沉降(30 kg N·hm~(-2)·a~(-1)),设置无凋落叶(bare soil,BS)、马尾松凋落叶(Pinus massoniana litter,PL)、杉木凋落叶(Cunninghamia lanceolata litter,CL)及木荷凋落叶(Schima superba litter,SL)4种处理,恒温恒湿的条件下研究不同树种(马尾松、木荷、杉木)凋落叶分解率、土壤理化性质和土壤天冬酰胺酶及纤维素酶活性动态。结果表明:模拟氮沉降232 d后,杉木凋落叶分解最快,其次是木荷凋落叶,马尾松凋落叶分解最慢。随着外源氮的累积与凋落叶分解,凋落叶全氮含量增加,C∶N减小,土壤pH值下降显著。添加硝酸铵明显提高土壤氮素有效性。外源氮的持续输入能促进土壤纤维素酶活性增加,抑制土壤天冬酰胺酶的活性。凋落叶在分解前期抑制了土壤纤维素酶活性而后期起促进作用,但凋落叶分解对土壤天冬酰胺酶活性的影响无显著规律性。因此,氮循环将改变森林土壤C∶N比,从而影响森林生态系统的物质循环和能量流动。  相似文献   
3.
为了解土壤挥发性有机化合物(VOCs)对氮沉降的响应,本研究以马尾松和木荷幼苗为研究对象,设置3个氮水平(5.6、15.6和20.6 g·m^-2·a^-1)和两种氮添加方式(土壤施氮和叶面施氮),通过质子转移反应飞行时间质谱仪分析植物土壤VOCs对不同氮水平和氮添加方式的响应。结果表明,马尾松和木荷幼苗根系土壤释放的总VOCs通量为19.50~70.94 pmol·g^-1·h^-1,以含氧VOCs(乙醛、甲醇和乙烯酮)和含氮VOCs(甲酰胺和丙胺)为主,分别占总VOCs的22.04%~47.71%和3.31%~38.68%。两种氮添加方式均显著地促进马尾松和木荷幼苗根系土壤含氮VOCs释放,这与土壤铵态氮和硝态氮含量显著相关。叶面施氮处理下马尾松根系土壤总VOCs释放显著增加,不同幼苗根系土壤释放的不同种类VOCs对氮水平和氮添加方式的响应不一致。研究结果可为评估土壤VOCs对大气氮沉降增加的响应提供基础数据。  相似文献   
4.
为探讨全球气候变化对土壤羰基硫(COS)的影响,本研究以南方典型蔗田土壤作为研究对象,室内模拟不同环境因子(温度、含水率和大气CO_2浓度),利用动态箱/GC-MS分析了原位和异位土壤COS通量。结果表明,土壤原位土和异位土COS通量差异较大,原位土COS吸收速率小于异位土,而释放速率大于异位土。土壤灭菌后COS的吸收显著降低,表明土壤COS吸收是一个生物过程。温度对异位土壤COS吸收影响较大,25℃异位土壤COS吸收最小,为100.4 pmol·m~(-2)·s~(-1);土壤含水量对原位土壤COS吸收影响最大,50%的土壤最大持水量条件COS吸收最小,为0.9 pmol·m~(-2)·s~(-1);大气CO_2浓度增加抑制原位土释放COS。因此,在研究土壤COS通量时,需综合考虑土壤结构、土壤温湿度和大气CO2浓度的影响。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号