首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
农学   2篇
农作物   2篇
植物保护   1篇
  2021年   1篇
  2020年   1篇
  2013年   1篇
  2012年   1篇
  1994年   1篇
排序方式: 共有5条查询结果,搜索用时 453 毫秒
1
1.
BACKGROUND: Most insect‐resistant transgenic crops employ toxins to control pests. A novel approach is to enhance the effectiveness of natural enemies by genetic engineering of the biosynthesis of volatile organic compounds (VOCs). Before the commercialisation of such transgenic plants can be pursued, detailed fundamental studies of their effects on herbivores and their natural enemies are necessary. The linalool/nerolidol synthase gene FaNES1 was constitutively expressed from strawberry in three Arabidopsis thaliana accessions, and the behaviour of the aphid Brevicoryne brassicae L., the parasitoid Diaeretiella rapae McIntosh and the predator Episyrphus balteatus de Geer was studied. RESULTS: Transgenic FaNES1‐expressing plants emitted (E)‐nerolidol and larger amounts of (E)‐DMNT and linalool. Brevicoryne brassicae was repelled by the transgenic lines of two of the accessions, whereas its performance was not affected. Diaeretiella rapae preferred aphid‐infested transgenic plants over aphid‐infested wild‐type plants for two of the accessions. In contrast, female E. balteatus predators did not differentiate between aphid‐infested transgenic or wild‐type plants. CONCLUSION: The results indicate that the genetic engineering of plants to modify their emission of VOCs holds considerable promise for facilitating biological control of herbivores. Validation for crop plants is a necessary next step to assess the usefulness of modified volatile emission in integrated pest management. Copyright © 2012 Society of Chemical Industry  相似文献   
2.
Summary Seedlings from 77 accessions including inbreds, F1 hybrids and seven F2 populations were exposed to approximately 60% shading for 35 days following transplanting into the field.Most of the lines did not set fruit under the shading due to heavy abscission of flowers. A few exceptional lines, hybrids and F2 segregants showed resistance to abscission and set normal fruits under the shading regime. This procedure is suggested for screening against stress-induced flower abscission. An association is suggested between resistance to shading and to high temperatures and its genetic control.Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel No. 1209-E, 1993 series.  相似文献   
3.
Understanding the mechanisms that sustain immunological nonreactivity is essential for maintaining tissue in syngeneic and allogeneic settings, such as transplantation and pregnancy tolerance. While most transplantation rejections occur due to the adaptive immune response, the proinflammatory response of innate immunity is necessary for the activation of adaptive immunity. Botryllus schlosseri, a colonial tunicate, which is the nearest invertebrate group to the vertebrates, is devoid of T- and B-cell-based adaptive immunity. It has unique characteristics that make it a valuable model system for studying innate immunity mechanisms: (i) a natural allogeneic transplantation phenomenon that results in either fusion or rejection; (ii) whole animal regeneration and noninflammatory resorption on a weekly basis; (iii) allogeneic resorption which is comparable to human chronic rejection. Recent studies in B. schlosseri have led to the recognition of a molecular and cellular framework underlying the innate immunity loss of tolerance to allogeneic tissues. Additionally, B. schlosseri was developed as a model for studying hematopoietic stem cell (HSC) transplantation, and it provides further insights into the similarities between the HSC niches of human and B. schlosseri. In this review, we discuss why studying the molecular and cellular pathways that direct successful innate immune tolerance in B. schlosseri can provide novel insights into and potential modulations of these immune processes in humans.  相似文献   
4.
Tomato (Solanum lycopersicum) is the most cultivated crop in the Solanaceae family and is a host for Oidium neolycopersici, the cause agent of powdery mildew disease. In wild species of tomato, genes (Ol-1Ol-6) for monogenic resistance have been identified. Moreover, three quantitative resistance loci (QRLs), namely Ol-qtl1, Ol-qtl2 and Ol-qtl3, have been mapped in Solanum neorickii G1.1601. In this work, we developed several advanced backcross populations in order to fine-map these Ol-qtls. Resistant lines harboring individual Ol-qtl were produced and used in recombinant screening. Ten recombinants were identified in chromosomal regions carrying Ol-qtl1s. The recombinant individuals were used to produce recombinant families (RFs). By screening these RFs with molecular markers and testing them with O. neolycopersici, we could localize Ol-qtl1 in a region of about 2.3 Mbp on the long arm of chromosome 6 and Ol-qtl2 in a region of 2.5 Mbp on the short arm of chromosome 12. On the other hand, the presence of Ol-qtl3 locus was not confirmed in this study. The fine-mapping results further demonstrated the co-localization between Ol-qtls and genes for monogenic resistance; the Ol-qtl1 interval contains the Ol-1 gene and the Ol-qtl2 interval harbors the Lv gene that confers monogenic resistance to Leveillula taurica, another species of tomato powdery mildew.  相似文献   
5.
Soil drought occurrence during dry season has been the main constraint, besides prolonged flooding during rainy season, in increasing cropping intensity and rice productivity in tropical riparian wetland. Use of drought tolerant rice genotype might be a suitable option for overcoming such problem. This study focused on the effects of gradual soil drying during early vegetative growth stage on morphological and physiological traits of five Oryza glaberrima genotypes, namely RAM12, RAM14, RAM59, RAM97 and RAM101, and two Oryza sativa subsp japonica genotypes, i.e. Koshihikari and Minamihatamochi. The plants were subjected to 6 d of gradual soil drying condition from 15 days after transplanting (DAT) to 20 DAT, and were allowed to recover until 22 DAT. Gradual soil drying reduced plant growth as indicated by dry mass accumulation. Drought reduced stomatal conductance and increased leaf rolling score of all the genotypes. All the genotypes showed comparable response on stomatal conductance, but O. glaberrima genotypes performed higher in leaf rolling recovery. Meanwhile, O. sativa genotypes decreased total leaf area and specific leaf area, but increased specific leaf weight in order to avoid further damages due to drought stress. Drought tolerance mechanisms in RAM101, RAM12, RAM59 and RAM14 were associated with leaf morpho-physiological responses, root traits and dry biomass accumulation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号