首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137786篇
  免费   8026篇
  国内免费   653篇
林业   5907篇
农学   4573篇
基础科学   1075篇
  16633篇
综合类   25553篇
农作物   5060篇
水产渔业   6680篇
畜牧兽医   70429篇
园艺   1909篇
植物保护   8646篇
  2019年   1392篇
  2018年   2071篇
  2017年   2359篇
  2016年   2126篇
  2015年   1968篇
  2014年   2307篇
  2013年   5031篇
  2012年   4335篇
  2011年   5283篇
  2010年   3576篇
  2009年   3498篇
  2008年   5082篇
  2007年   4715篇
  2006年   4426篇
  2005年   4184篇
  2004年   3965篇
  2003年   4021篇
  2002年   3785篇
  2001年   4278篇
  2000年   4297篇
  1999年   3429篇
  1998年   1537篇
  1997年   1343篇
  1996年   1269篇
  1995年   1446篇
  1994年   1360篇
  1993年   1283篇
  1992年   2727篇
  1991年   2936篇
  1990年   2967篇
  1989年   2797篇
  1988年   2632篇
  1987年   2616篇
  1986年   2671篇
  1985年   2491篇
  1984年   2119篇
  1983年   1881篇
  1982年   1209篇
  1979年   1886篇
  1978年   1510篇
  1977年   1303篇
  1976年   1293篇
  1975年   1361篇
  1974年   1670篇
  1973年   1688篇
  1972年   1633篇
  1971年   1525篇
  1970年   1470篇
  1969年   1447篇
  1967年   1256篇
排序方式: 共有10000条查询结果,搜索用时 250 毫秒
1.
吕珽  陈虹吟  汤承  岳华 《畜牧兽医学报》2021,52(8):2361-2368
旨在调查川西北牦牛哺乳动物正呼肠孤病毒(MRV)的感染情况并分离病毒。采用RT-PCR方法,对采自川西北15个牧场的72份牦牛腹泻粪便样本和其中5个牧场的15份腹泻牦牛血清样本进行MRV检测,阳性样本进一步用分型PCR确定其血清型。结果显示,粪便样本中MRV检出率为20.83%(15/72),血清2型的比例为60%(9/15);血清样本中MRV检出率为40%(6/15),血清2型的比例为83.33%(5/6);未检测到其他血清型。成功地从腹泻粪便中分离到1株MRV血清2型毒株(TCID50为4×10-8.56·mL-1),并获得长度为23 587 bp的分离株全基因组,该分离株与中国猪源毒株的遗传关系最近;与GenBank中所有的MRV S1基因相比,该分离株有4个独特的氨基酸突变。本研究从牦牛中检测到MRV,并分离到1株牛源MRV血清2型毒株,为进一步研究MRV血清2型生物学特性奠定了基础。  相似文献   
2.
Efficient management of whitefly-borne diseases remains a challenge due to the lack of a comprehensive understanding of their epidemiology, particularly of the diseases tomato golden mosaic and tomato yellowing. Here, by monitoring 16 plots in four commercial fields, the temporal and spatial distribution of these two diseases were studied in tomato fields in Brazil. In the experimental plots these diseases were caused by tomato severe rugose virus (ToSRV) and tomato chlorosis virus (ToCV), respectively. The incidence of each virus was similar in the plots within a field but varied greatly among fields. Plants with symptoms for both diseases were randomly distributed in three of four spatial analyses. The curves representing the progress of both diseases were similar and contained small fluctuations, indicating that the spread of both viruses was similar under field conditions. In transmission experiments of ToSRV and ToCV by Bemisia tabaci MEAM1 (former biotype B), these viruses had a similar transmission rate in single or mixed infections. It was then shown that primary and secondary spread of ToCV were not efficiently controlled by insecticide applications. Finally, in a typical monomolecular model of disease progress, simulation of the primary dissemination of ToSRV and ToCV showed that infected plants were predominantly randomly distributed. It is concluded that, although the manner of vector transmission differs between ToSRV (persistent) and ToCV (semipersistent), the main dispersal mechanisms are most probably similar for these two diseases: primary spread is the predominant mechanism, and epidemics of these diseases have been caused by several influxes of viruliferous whiteflies.  相似文献   
3.
对荷兰引进的10个葡萄风信子品种进行露地栽培,对其物候期及观赏性状进行观察与评价.结果表明,引进的10个葡萄风信子品种在苏州地区露地栽培均能正常开花;其中"大微笑""幻想创造""蓝魔法""触雪"等品种适宜在园林中推广与应用.  相似文献   
4.
The objective of this experiment was to evaluate the Fieldscout CM 1000 NDVI and Yara N‐Tester as easy‐to‐use and cost‐effective tools for predicting foliar chlorophylls (a, b and total) and crude protein (CP) concentrations in herbage from three tropical grass species. Optical chlorophyll measurements were taken at three stages (4, 8 and 12 weeks) of regrowth maturity in Guinea grass (Panicum maximum) and Mulato II (Brachiaria hybrid) and at 6 and 12 weeks maturity in Paspalum spp (Paspalum atratum). Grass samples were harvested subsequent to optical measurements for laboratory analysis to determine CP and solvent‐extractable chlorophylls (a, b and total) concentrations. Optical chlorophyll measurements and CP concentrations were highly correlated (Yara N‐Tester: r2 = 0·77–0·89; Fieldscout CM 1000 NDVI: r2 = 0·52–0·84). Crude protein prediction models from the Yara N‐Tester and Fieldscout CM 1000 NDVI accounted for 70–89% and 44–73% CP variability, respectively, in Mulato II and Guinea grass. The Yara N‐tester produced more accurate and reliable CP estimates based on very high concordance correlation coefficient [CCC (0·73–0·91)] and low rMSPE, mean and regression bias. It is concluded that the Yara N‐Tester produces more accurate and reliable CP estimates of tropical pastures.  相似文献   
5.
The objective of this study was to evaluate the effects of defoliation frequency (either at two‐ or three‐leaf stage) and nitrogen (N) application rate (0, 75, 150, 300, 450 kg N ha?1 year?1) on herbage carbohydrate and crude protein (CP) fractions, and the water‐soluble carbohydrate‐to‐protein ratio (WSC:CP) in perennial ryegrass swards. Crude protein fractions were analysed according to the Cornell carbohydrate and protein system. Carbohydrate fractions were analysed by ultra‐high‐performance liquid chromatography. Sward defoliation at two‐leaf stage increased the total CP, reduced the buffer‐soluble CP fractions and decreased carbohydrate fractions of herbage (P < 0·001). The effect of defoliation frequency was less marked during early spring and autumn (P < 0·001) than for the rest of the seasons. An increase in N application rate was negatively associated with WSC, fructans and neutral detergent fibre (P < 0·001), and positively associated with CP and nitrate (N‐NO3) contents of herbage. Nitrogen application rate did not affect CP fractions of herbage (P > 0·05). The fluctuations in CP and WSC contents of herbage resulted in lower WSC:CP ratios during early spring and autumn (0·45:1 and 0·75:1 respectively) than in late spring (1·11:1). The herbage WSC:CP ratio was greater (P < 0·001) at the three‐leaf than the two‐leaf defoliation stage and declined as the N application increased in all seasons (P < 0·001). The results of this study indicate that CP and carbohydrate fractions of herbage can be manipulated by sward defoliation frequency and N application rate. The magnitude of these effects, however, may vary with the season.  相似文献   
6.
Lupinus albus seeds contain conglutin gamma (Cγ) protein, which exerts a hypoglycemic effect and positively modifies proteins involved in glucose homeostasis. Cγ could potentially be used to manage patients with impaired glucose metabolism, but there remains a need to evaluate its effects on hepatic glucose production. The present study aimed to analyze G6pc, Fbp1, and Pck1 gene expressions in two experimental animal models of impaired glucose metabolism. We also evaluated hepatic and renal tissue integrity following Cγ treatment. To generate an insulin resistance model, male Wistar rats were provided 30% sucrose solution ad libitum for 20 weeks. To generate a type 2 diabetes model (STZ), five-day-old rats were intraperitoneally injected with streptozotocin (150 mg/kg). Each animal model was randomized into three subgroups that received the following oral treatments daily for one week: 0.9% w/v NaCl (vehicle; IR-Ctrl and STZ-Ctrl); metformin 300 mg/kg (IR-Met and STZ-Met); and Cγ 150 mg/kg (IR-Cγ and STZ-Cγ). Biochemical parameters were assessed pre- and post-treatment using colorimetric or enzymatic methods. We also performed histological analysis of hepatic and renal tissue. G6pc, Fbp1, and Pck1 gene expressions were quantified using real-time PCR. No histological changes were observed in any group. Post-treatment G6pc gene expression was decreased in the IR-Cγ and STZ-Cγ groups. Post-treatment Fbp1 and Pck1 gene expressions were reduced in the IR-Cγ group but increased in STZ-Cγ animals. Overall, these findings suggest that Cγ is involved in reducing hepatic glucose production, mainly through G6pc inhibition in impaired glucose metabolism disorders.  相似文献   
7.
8.
9.
Ray blight caused by Stagonosporopsis tanaceti is one of the most important diseases of pyrethrum (Tanacetum cinerariifolium), a perennial herbaceous plant cultivated for the extraction of insecticidal pyrethrins in Australia. The disease is responsible for complete yield loss in severe outbreaks. Infected seed is considered as the principal source of S. tanaceti. Infection hyphae remain only in the seed coat and not in the embryo, resulting in pre- and post-emergence death of seedlings and latent infection. Therefore, quantification of the level of infection by S. tanaceti within seed using a qPCR assay is important for efficient management of the disease. Stagonosporopsis tanaceti completes its life cycle within 12 days after leaf infection through production of pycnidia and can infect every tissue of the pyrethrum plant except the vascular and root tissues. Ray blight epidemics occur in pyrethrum fields through splash dispersal of pycnidiospores between adjacent plants. Besides steam sterilization, thiabendazole/thiram and fludioxonil are effective seed-treating chemicals in controlling S. tanaceti before planting begins. Ray blight is currently managed in the field through the foliar application of strobilurin fungicides in the first 1–2 years of crop establishment. Later on, difenoconazole and multisite specific fungicides in the next 2–3 years during early spring successfully reduce ray blight infestation. Avoiding development of resistance to fungicides will require more sustainable management of ray blight including the development and deployment of resistant cultivars.  相似文献   
10.

Background

Salinity is one of the most severe and widespread abiotic stresses that affect rice production. The identification of major-effect quantitative trait loci (QTLs) for traits related to salinity tolerance and understanding of QTL × environment interactions (QEIs) can help in more precise and faster development of salinity-tolerant rice varieties through marker-assisted breeding. Recombinant inbred lines (RILs) derived from IR29/Hasawi (a novel source of salinity) were screened for salinity tolerance in the IRRI phytotron in the Philippines (E1) and in two other diverse environments in Senegal (E2) and Tanzania (E3). QTLs were mapped for traits related to salinity tolerance at the seedling stage.

Results

The RILs were genotyped using 194 polymorphic SNPs (single nucleotide polymorphisms). After removing segregation distortion markers (SDM), a total of 145 and 135 SNPs were used to construct a genetic linkage map with a length of 1655 and 1662 cM, with an average marker density of 11.4 cM in E1 and 12.3 cM in E2 and E3, respectively. A total of 34 QTLs were identified on 10 chromosomes for five traits using ICIM-ADD and segregation distortion locus (SDL) mapping (IM-ADD) under salinity stress across environments. Eight major genomic regions on chromosome 1 between 170 and 175 cM (qSES1.3, qSES1.4, qSL1.2, qSL1.3, qRL1.1, qRL1.2, qFWsht1.2, qDWsht1.2), chromosome 4 at 32 cM (qSES4.1, qFWsht4.2, qDWsht4.2), chromosome 6 at 115 cM (qFWsht6.1, qDWsht6.1), chromosome 8 at 105 cM (qFWsht8.1, qDWsht8.1), and chromosome 12 at 78 cM (qFWsht12.1, qDWsht12.1) have co-localized QTLs for the multiple traits that might be governing seedling stage salinity tolerance through multiple traits in different phenotyping environments, thus suggesting these as hot spots for tolerance of salinity. Forty-nine and 30 significant pair-wise epistatic interactions were detected between QTL-linked and QTL-unlinked regions using single-environment and multi-environment analyses.

Conclusions

The identification of genomic regions for salinity tolerance in the RILs showed that Hasawi possesses alleles that are novel for salinity tolerance. The common regions for the multiple QTLs across environments as co-localized regions on chromosomes 1, 4, 6, 8, and 12 could be due to linkage or pleiotropic effect, which might be helpful for multiple QTL introgression for marker-assisted breeding programs to improve the salinity tolerance of adaptive and popular but otherwise salinity-sensitive rice varieties.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号