首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   2篇
  国内免费   1篇
林业   24篇
基础科学   3篇
  3篇
综合类   18篇
农作物   4篇
水产渔业   1篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2012年   4篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   6篇
  2007年   4篇
  2006年   4篇
  2005年   1篇
  2004年   7篇
  2003年   3篇
  2002年   4篇
  2000年   3篇
  1996年   1篇
  1990年   4篇
排序方式: 共有53条查询结果,搜索用时 15 毫秒
1.
棉秆力学性能试验   总被引:8,自引:1,他引:8  
以创新棉958棉秆为试验材料,在万能试验机上对收割期的棉秆进行剪切、压缩、弯曲力学性能试验。试验结果表明:试样的含水率在30%~50%时,棉秆底部和中部的抗压强度、剪切强度较小,分别为1.66~3.13MPa、0.74~1.12MPa;试样的抗弯强度随含水率的升高而降低,试样底部弯曲强度为4.20~5.08MPa。在剪切、压缩、弯曲试验中,试样底部消耗的功分别为2.98~4.32N·m、2.91~4.34N·m、1.51~4.18N·m。  相似文献   
2.
猪舍场景下的生猪目标跟踪和行为检测方法研究   总被引:1,自引:0,他引:1  
段玉瑶  马丽  刘刚 《农业机械学报》2015,46(S1):187-193
针对猪舍内光照情况复杂、目标与背景颜色较为接近、相机视角与参数不佳等环境与硬件条件的不足,导致生猪跟踪过程中精度低、稳定性差的问题,充分结合实际场景,提出了一种优化特征提取的压缩感知跟踪算法。优化跟踪窗口为椭圆形,以接近生猪体态;并结合灰度和纹理特征,优化传统压缩感知算法特征提取过程;划分猪舍区域,依据生猪所处位置来判断其当前行为。随机选取猪舍内不同场景、不同光照强度、不同生猪品种的多段视频进行实验,实验结果表明:中心点均方根误差均值为25.44,分别是传统压缩感知算法、模板更新跟踪算法和Camshift跟踪算法的60.32%、33.33%、32.57%;中心点均方根误差方差为70.26,分别是传统压缩感知算法、模板更新跟踪算法和Camshift跟踪算法的7.13%、47.62%、17.16%;跟踪速度达到19.3帧/s。  相似文献   
3.
刨花板垂直平面压缩流变性能研究(Ⅱ)   总被引:1,自引:0,他引:1  
用参数分离法对不同密度刨花板所进行的垂直平面压缩流变性能的研究,进一步证明了该方法的可靠性。密度对流变性能的影响主要表现在:瞬间弹性变形和推迟弹性变形柔量函数C_(HR(f))=A+Blogt中的B值均随密度的提高而减小;瞬间塑性变形随密度的提高而降低,并且,对贴面刨花板厚度控制具特殊意义的塑性变形——压缩应力关系曲线的第一个“转折点”随密度的提高而向应力增大方向移动;依赖时间之塑性变形柔量函数∑_(P(t))=A+Blogt中的B值随密度的提高而减小,并且,密度的提高导致依赖时间之塑性变形的“三阶段发展”向应力增大方向推移。这些规律的发现,对正确确定贴面条件和基板条件,严格控制贴面刨花板厚度偏差具有重要的指导意义。  相似文献   
4.
5.
To obtain high-strength phenol formaldehyde (PF) resin-impregnated compressed wood at low pressing pressure, the effects of resin content, preheating temperature, pressing temperature, and pressing speed on the compressive deformation of oven-dried low molecular weight PF resin-impregnated wood was investigated. With an increase of PF resin content, the Youngs modulus of the cell wall perpendicular to the fiber direction decreases, and collapse-initiating pressure decreases linearly with the Youngs modulus. This indicates that the occurrence of cell wall collapse is strain-dependent. By increasing preheating temperatures, the collapse-initiating pressure increases due to the increment of the Youngs modulus of the cell wall. An increase in pressing temperature results in the thermal softening of the cell wall and causes collapse at a lower pressure. The wood is compressed effectively despite accelerated resin curing. The pressing speed significantly affects the viscoelastic deformation of the cell wall and the wood is well deformed with decreasing pressing speed, although the differences in density and mechanical properties are relatively small after a pressure-holding period of 30min. In all the parameters examined in this study, the Youngs modulus and bending strength increase with increasing density.  相似文献   
6.
The mechanical behavior of steamed spruce wood changes dramatically with compression along the grain, the change being much more moderate perpendicular to the grain. The stiffness decrement due to increased temperature is greatest in the tangential material direction. The stiffness decrement due to compression is greatest along the grain. Compression to 80% compressive strain at 131°C inverts the order of the material directions regarding stiffness, the stiffness being the least along the grain. Plastic strain due to compression is greater at higher temperatures. The compression-induced decrement of stiffness along the grain is greater at higher temperatures, but the off-axis decrement of stiffness is less at higher temperatures.  相似文献   
7.
Poor compatibility was found between exploded wood fiber strand (WFS) and cement due to the excessive presence of water-soluble degraded polysaccharides in extractives of exploded WFS obtained from weathered wood waste treated by the water-vapor explosion process (WVEP). This study presents some comparative results from a continuing investigation on the compressive strengths of exploded WFS–cement mixtures. Based on results previously obtained with the hydration test, the relation between hydration behavior and compressive strength of the mixture was explored. In addition, the effect of the curing age on compressive strength development of the mixture with selected additive chemicals was examined. The results supported the results of early studies with hydration tests indicating that adding MgCl2 to the mixtures of exploded WFS mixed with quick-curing cement or ordinary Portland cement and a composite of MgCl2 + CaO added to the mixture of exploded WFS and furnace-slag cement effectively improved the hydration behaviors; it greatly enhanced the compressive strengths of mixtures as well. Compressive strengths were strongly correlated to maximum hydration temperatures (Tmax) of wood–cement mixtures influenced by the cement type, wood wastes (treated or not with WVEP), additive chemicals, and their content levels. The results also indicated that adding selected chemicals had no significant effect on compressive strength among the mixtures of exploded WFS mixed, respectively, with three types of cement at a curing age of 180 days. X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy were used to identify the hydration products and to probe the element distribution of the mixture in the wood–cement interface zone from a fractured surface.Part of this report was presented at the 52nd Annual Meeting of the Japan Wood Research Society, Gifu, April 2002  相似文献   
8.
赤水市几种主要竹种的气干密度与力学性质的关系研究表明各竹种的气干密度与力学性质除部分竹种外均存在一定的曲线或直线关系,其中在气干密度与顺纹抗压强度关系中,除了花吊丝外,其他竹种均可利用回归方程σ=apb、σ=ap+b进行估测.在气干密度与抗弯强度关系中各竹种均可利用回归方程σ=apb、σ=ap +b进行估测.另外,在各回归方程中他们的精确度又存在一定的差异.  相似文献   
9.
Wheat endosperm texture (hardness) largely determines end-product suitability. Since its development 25 years ago, the single kernel classification system (SKCS, a mechanical instrument that measures, among other properties, the force imparted on a kernel during crushing) has been used in breeding programs to differentiate soft wheats from hard wheats. Nominally, these have a soft to hard SKCS hardness index (HI) range of 25–75 (dimensionless units). However, in recent years, breeders have developed extremely soft (‘Super Soft’) lines having SKCS HI < 0. Until now, these very low SKCS HIs have not been corroborated with traditional methodologies that characterize mechanical strength. Herein, we report on the relationships between SKCS HI and three compressive strength properties (maximum stress, Young's modulus, and work) in Super Soft wheat. With respective correlation coefficients of 0.76, 0.66, and 0.75, we have found that the relationships between SKCS HI and compressive strength agree with prior research involving ordinary soft and hard wheats.  相似文献   
10.
Excessive soil compaction has negative effects for agriculture and the environment. Measurement of soil strength is a common indirect measure of soil compactness. In the context of precision farming, on-the-go soil mechanical resistance measurements using single- and multiple-tip horizontal sensors have been developed. It has been reported that there was a significant relationship between soil mechanical resistance values measured with both vertically operated cone penetrometer and horizontally operated sensors only for relatively deep layers. It was hypothesized that the differences in horizontally measured soil resistance in different soil layers could be explained by different failure modes. The objective of this research was to develop a horizontal soil mechanical resistance sensor and to observe the failure mode in front of it while penetrating soil at three different depths. A single-tip horizontal penetrometer was equipped with a 30° prismatic tip and had a base area of 324 mm2. The prismatic tip was mounted horizontally to an S-shaped load cell housed inside a shank. A data-logging system was also developed to record measurements with 10 Hz sampling rate. The sensor was tested in a field with silty clay loam soil at three depths of 20, 25 and 30 cm. Cone index (CI) values were obtained with 1 cm depth increments and 1 m horizontal intervals along each transect for comparison using a standard cone penetrometer. The results showed that average horizontal soil mechanical resistance index (HRI) values for both depths of 20 and 25 cm were similar due to the brittle failure mode in both cases. However, when the tip was operated below the critical depth of the sensor, the value of HRI at 30 cm depth increased three times when compared with 20 or 25 cm depth values. This was due to change in failure mode from brittle to compressive mode below the critical depth. There was a significant relationship (R2 = 0.75) between HRI and CI for the 30-cm depth, whereas for shallower depths the relation was not significant. It can be concluded that the correlation between measurements obtained with the vertically and horizontally operated penetrometers would be significant as long as both produced the same soil failure mode.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号