首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   631篇
  免费   42篇
  国内免费   30篇
林业   63篇
农学   89篇
基础科学   22篇
  50篇
综合类   185篇
农作物   64篇
水产渔业   11篇
畜牧兽医   50篇
园艺   12篇
植物保护   157篇
  2024年   2篇
  2023年   8篇
  2022年   17篇
  2021年   20篇
  2020年   18篇
  2019年   19篇
  2018年   19篇
  2017年   34篇
  2016年   31篇
  2015年   20篇
  2014年   46篇
  2013年   42篇
  2012年   49篇
  2011年   39篇
  2010年   38篇
  2009年   42篇
  2008年   20篇
  2007年   28篇
  2006年   28篇
  2005年   18篇
  2004年   18篇
  2003年   19篇
  2002年   15篇
  2001年   15篇
  2000年   15篇
  1999年   16篇
  1998年   5篇
  1997年   6篇
  1996年   7篇
  1995年   8篇
  1994年   6篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   4篇
  1989年   6篇
  1988年   2篇
  1987年   4篇
  1986年   2篇
  1985年   5篇
  1984年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有703条查询结果,搜索用时 46 毫秒
1.
旨在满足马铃薯生产中茬口衔接、机械化生产技术应用、不利气候下稳产等对马铃薯出苗早、齐、壮的需求,以‘费乌瑞它’为供试品种,用基于有益活菌或工程菌提取物的5种生物制剂进行种薯处理,对多重性状进行了对比分析。5种生物制剂较常规化学制剂,均能够不同程度地促进种薯萌芽和芽根同生,出苗期提前2~7天,播种后49天的出苗率提高3.33%~17.78%。其中,表现最好的为酵母核苷酸衍生物和VDAL,种薯萌发和生根均显著高于对照。霜冻后,生物剂拌种处理在恢复前期促进植株生长,由此促进恢复后期的块茎发育,较常规化学处理增产8.39%~24.03%,体现了不同程度的保产效果。多马道黑、酵母核苷酸衍生物、根肽和VDAL体现出较好的保产效果,可作为种薯处理剂投入马铃薯生产。  相似文献   
2.
Mid-storage hydration-dehydration treatments with medium-vigour lettuce seed very effectively reduced physiological deterioration in storage and ultimately showed better field emergence and final yield. Soaking-drying treatment of high-vigour lettuce seed was not effective. Pre-sowing treatment of medium-vigour lettuce seed, though less effective than mid-storage treatment, gave better field performance, but high-vigour seed did not benefit from the treatment. For carrot, both mid-storage and pre-sowing seed treatments proved beneficial, with the former showing better performance than the latter. Unlike lettuce, well-preserved carrot seed responded positively to the pre-sowing treatment.  相似文献   
3.
4.
Leptochloa chinensis is a new weed that has been found with increasing frequency in Italian rice paddies. The germination ecology of L. chinensis seeds was studied in order to investigate the development mechanisms and survival strategy of this weed in rice paddies of northern Italy. Leptochloa chinensis seeds showed no dormancy and exhibited germination even in anoxic conditions. Germination was strongly influenced by temperature (minimum around 15°C; optimal 25–35°C) and light (phytochrome dependent). Temperature fluctuation caused an increase of seed germination in the dark. Seed burial also strongly inhibited germination and emergence of this species. At 5 cm seed burial only 5% of seedlings emerged in flooded conditions, while at the same depth, but with no flooding, no seedling emergence was observed. This phenomenon was not due to oxygen depletion, as germination was not inhibited by complete anoxia, as demonstrated by the fact that some seedlings did emerge in flooding conditions when water was no deeper than 6 cm. Seed burial and concomitant flooding induced an unusual germination: first coleoptile emergence and subsequently emergence of the radicle was observed. The possible exploitation of this knowledge for weed management is discussed.  相似文献   
5.
Seed germination, seedling emergence, and the morphological characteristics of juvenile seedlings of Commelina benghalensis L. were observed. For aerial seeds collected in September and October, seedling emergence peaked in April and June for large seeds and from June to August for small seeds, whereas seedling emergence for large seeds collected in November showed peaks in March and April under natural rainfall conditions, and in April and June under irrigation conditions. Seedlings from small seeds emerged intermittently over a longer period from April to August under both conditions. Aerial seeds of C. benghalensis germinated on wet filter paper on the second day after seeding (DAS) for large seeds and the fourth DAS for small seeds. The germination percentage for large seeds was higher than that for small seeds by the 14th DAS. The germination percentage for large aerial seeds showed no significant difference between light and dark conditions. However, the percentage for small aerial seeds was higher under light than under dark conditions. Seedlings from large aerial seeds emerged on the third DAS at 0–50 mm soil depths. The percentage of emergence at 0 and 1 mm soil depths increased until the 30th DAS, whereas those at soil depths of 5–50 mm showed no change after the 9th DAS. There was no emergence at a soil depth of 100 mm. Seedlings from small aerial seeds emerged on the 6th DAS at 0–1 mm soil depths, with the percentage increasing until the 30th DAS. Although seedlings at 5 and 10 mm soil depths also emerged on the 6th DAS, there was no change in the percentage after the 12th DAS. There was no emergence at soil depths of 20–100 mm. The hypocotyl and taenia (part of the cotyledon connected to the seed) in juvenile seedlings that emerged from soil depths of 50 mm were longer than those in seedlings emerging from a soil depth of 1 mm.  相似文献   
6.
The spawning success of lithophilic salmonids is strongly influenced by the fine sediment content (“fines”) of spawning substrates, yet knowledge on the impacts of fines on the spawning of non‐salmonid lithophiles remains limited, despite their ecological and socio‐economic importance in European rivers. Consequently, the aim here was to use an ex‐situ experiment to investigate the impact of sand content on egg survival and timing of larval emergence of the surface‐spawning cyprinid European barbel Barbus barbus. Thirty incubator boxes within a recirculating system were filled with one of five experimental sediment mixtures (0%–40% sand by mass) that each contained 300 fertilised eggs at a depth of 50 mm. Emerged, free‐swimming larvae were captured and counted daily to assess grain‐size effects on larval survival and emergence. Specifically, total proportion of emerged larvae, cumulative daily proportion of emerged larvae and time required to reach 50% emergence were measured during the study. Whilst the proportion of sand in the sediments did not have a significant impact on egg‐to‐emergence survival (mean survival per treatment 75%–79%), it significantly affected the timing of larval emergence to the water column; early emergence was detected in treatments with elevated sand content (on average, 50% emergence after 12–13 days versus 19 days in the control). Similar to findings from salmonid studies, these results suggest high sand content in spawning gravels can influence timing of larval emergence and potentially cyprinid lithophilic fish survival.  相似文献   
7.
Summary Laboratory studies were conducted to evaluate the effects of drying on soil strength and corn emergence (Zea mays L.). Corn was germinated in Billings silty clay under a bank of heat lamps which operated 9, 14, 19, or 24 h per day. Soil strength (modules of rupture), soil moisture content and emergence were measured daily.The relationship of soil strength to corn seedling emergence as influenced by the four light and heat durations and bare and mulched soil surfaces was determined. As soil strength increased emergence decreased until it ceased at soil strengths of about 80 kPa. Strength of this soil had a high negative correlation with soil water content and increased with time. Mulching decreased initial rate of drying, decreased crust strength, and improved corn emergence. The 14-hour light and heat treatment resulted in the highest corn emergence.Contribution from Colorado State Experiment Station, USDA-ARS Snake River Conservation Research Center, and USDA-ARS Fort Collins, respectively  相似文献   
8.
高养分富集植物凤眼莲的农田利用研究   总被引:2,自引:1,他引:2  
研究不同凤眼莲施用量条件下土壤养分变化以及小麦生长情况的结果表明:当凤眼莲施用量低于8.1kg·m-2,小麦出苗数不受影响;但当凤眼莲施用量超过8.1kg·m-2时,小麦出苗率显著降低。凤眼莲施用量为13.5kg·m-2时,尽管小麦出苗率显著降低,但由于具有较多的分蘖数和较高的每穗粒数,小麦最终产量与常规单施化肥处理间无显著差异。不同凤眼莲施用处理的土壤速效氮苗期差异显著,但分蘖期后处理间无显著差异;而速效磷和速效钾总体表现为随凤眼莲施用量增加而升高。此外,凤眼莲施用还可促进小麦茎秆对N、P、K的吸收和籽粒粗蛋白含量的增加。由此可见,凤眼莲是一种经济有效的农田有机肥料,其施用量以10.8~13.5kg·m-2为宜,施用后土壤N、P、K、有机质含量较高,且对产量影响不大,当季还可节约施用化学N141.75kg·hm-2、P36~45kg·hm-2,K可免施。  相似文献   
9.
The state of Morelos, Mexico has gradually become an important producer of gladiolus. Some preconditioning treatments of corms are empirically done causing uneven emergence and low quality of flowers. In this investigation, before planting, gladiolus corms var. ‘Blanca Borrego’ were dipped in chitosan (chitosan reagent and commercial chitosan Biorend®), in hot water at various temperatures and in treatments combined with Biorend® at 1.5% and hot water. Results indicated that the most influenced variables were corm germination, number of flowers per spike, number of cormlets and vase life. Overall, the commercial product Biorend® at 1.5% accelerated corm emergence in approximately 4 days, the number of flowers increased by 2–7 and the vase life extended for 3 days. The number of cormlets was also duplicated. Corms dipped in the commercial chitosan Biorend® at 1.5% at different intervals of time were not greatly affected except for the emergence and number of cormlets. However, for this experiment there were significant effects on the number of leaves and flowers because of the interactions between chitosan and the immersion time. The temperature of 55 °C affected plant development because emergence was delayed by 6 days; and there were less number of leaves, flowers and cormlets. On the other hand, the incidence of Fusarium oxysporum in naturally infected corms was 0% at temperatures of 55 °C and 50 °C. Immersion times (0, 10, 15 and 20 min) in hot water at 50 °C did not show significant effects on plant development and vase life. Corms dipped in Biorend® at 1.5% and hot water at 50 °C accelerated their emergence for about 1–7 days, the number of flowers increased by two, extended the storage life for 1–3 days and increased the number of cormlets. The integration of these two treatments -Biorend® and hot water- might be a good option for increasing the gladiolus plant quality and vase life.  相似文献   
10.
2011-2015年浙江省诸暨市对中早39进行了叠盘暗出苗机插育秧模式试验、示范和推广应用,经5年的试验、示范,明确了中早39叠盘暗出苗机插育秧模式的主要优点和增产机理,总结出了中早39叠盘暗出苗机插育秧技术的操作规程。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号