首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   5篇
  国内免费   48篇
林业   10篇
农学   23篇
基础科学   90篇
  45篇
综合类   43篇
农作物   4篇
畜牧兽医   7篇
植物保护   1篇
  2024年   1篇
  2023年   2篇
  2022年   6篇
  2021年   6篇
  2020年   4篇
  2019年   8篇
  2018年   8篇
  2017年   12篇
  2016年   8篇
  2015年   14篇
  2014年   15篇
  2013年   11篇
  2012年   14篇
  2011年   23篇
  2010年   11篇
  2009年   14篇
  2008年   2篇
  2007年   9篇
  2006年   5篇
  2005年   10篇
  2004年   2篇
  2003年   4篇
  2002年   6篇
  2001年   6篇
  2000年   5篇
  1999年   2篇
  1998年   3篇
  1997年   4篇
  1996年   1篇
  1994年   1篇
  1992年   2篇
  1989年   4篇
排序方式: 共有223条查询结果,搜索用时 31 毫秒
1.
惠健 《农机化研究》2005,(6):154-155,158
专用电机扭矩测量仪器精度高,但价格昂贵,操作复杂,长时间使用会出现误差。步进电机扭矩测量试验台系统采用单相交流电机作负载,使用标准扭矩仪对该系统进行标定来对待测调速电机进行扭矩测量。为此,介绍了一种电机扭矩测量系统的构成与工作原理。该系统以单片机为核心,组成扭矩测量与显示系统,可以较好地实现电机扭矩在线测量,具有较好的经济效益。  相似文献   
2.
为了研究边界滑移对上游泵送机械密封性能的影响,建立液膜三维几何模型和计算模型,基于 Navier 线性滑移模型对液膜壁面边界条件进行修正,采用商用软件 Fluent 的 SIMPLEC 算法及层流模型求解三维 Navier -Stokes 方程,并分析相对滑移量对液膜静压分布、开启力、摩擦扭矩、泄漏量的影响规律。结果表明:相对于边界滑移发生的位置,滑移速度的大小对密封性能的影响更大;当相对滑移量较小时,存在边界滑移与无滑移的模拟结果无明显区别,能很好地解释宏观无滑移边界假设的应用,当相对滑移量较大时液膜动压效应随滑移的增加而减弱,开启力、摩擦扭矩、泄漏量都随边界滑移的增加而减小;相对于开启力的降低,边界滑移的减阻和降低泄漏的效果更为明显;当开启力较小,应避免边界滑移发生;当开启力足够大时,加工成超疏水表面形成边界滑移,可极大地减少摩擦扭矩,降低能耗。  相似文献   
3.
为优化卷盘式喷灌机驱动结构,研制高效卷盘喷灌机驱动器,需要对卷盘式喷灌机的卷盘负载情况进行计算和分析。为此,以软管牵引式卷盘喷灌机为对象,建立了卷盘负载转矩计算的物理模型,理论推导了在运行时的卷盘负载转矩数学计算模型。以JP50和JP75型卷盘式喷灌机为例,按推导所得数学模型进行计算,得到了运行时卷盘负载转矩随已回卷PE管长度的变化规律和估计值。计算结果表明:JP50型卷盘式喷灌机运行时最大负载转矩约为960N·m,JP75型为6 001N·m;卷盘负载转矩随已回卷长度的增加而减小,且当卷盘回卷半径变化时,负载转矩将突然变大;负载转矩的大小和变化规律只与喷灌机的参数和运行条件有关,与运行时的速度无关。  相似文献   
4.
陈健 《排灌机械》2002,20(6):37-40
直接转矩控制(DTC)是一种高性能的控制方法,提出了一种基于TMS320C32的直接转矩控制系统实现方案。通过硬和软件设计,实现对异步电动机的直接转矩控制,实验结果表明了该方案的可行性,将其应用于水泵的调速系统中,能进一步提高水泵的运行效率。  相似文献   
5.
通过动力特性分析,解决了拖拉机动力输出轴转速高,输出扭矩较小,不能克服土壤对旋耕机的阻力矩,无法正常作业的问题.  相似文献   
6.
为了实现多级转速和转矩的输出,轴向柱塞马达必须使用节流阀、减压阀等耗能元件来改变输入压力和流量,但同时降低了效率。新型双斜盘多排式轴向柱塞马达可以利用其结构的特殊性,实现输出转矩的多样性。本文基于双斜盘多排式轴向柱塞马达的结构特点及工作原理,推导了该马达在不同工作方式下的理论瞬时转矩和转矩不均匀系数,并通过Matlab分析了内外马达转矩系数比对转矩不均匀系数的影响,设计了马达的实验液压系统并搭建了实验平台,对马达进行了原理性实验,并进行了数据分析。实验结果表明,在额定压力和额定排量下,该马达能实现多种不同的转速与转矩输出,随着内外马达转矩系数比的增大,低速大转矩的转矩不均匀系数越小,高速低转矩不稳定系数越大,通过合理设计可以实现马达在不同工作状态下的稳定运行,验证了新型马达在结构原理上的可行性,为新型轴向柱塞马达的改进设计提供了实验依据。  相似文献   
7.
基于离散元法的深松作业玉米秸秆运动规律   总被引:3,自引:2,他引:1  
东北垄作区玉米秸秆还田条件下,针对垄台播种带秸秆残茬易导致深松铲以及后续机具缠草堵塞和阻力增加等问题,建立深松铲-土壤-秸秆-根茬的离散元模型,分析仿真因素秸秆距垄台中心距离、秸秆与机具前进方向夹角、根茬状态(根茬中间切割、根茬一侧切割、根茬挑起和无根茬)和秸秆之间相互影响对深松作业过程中秸秆拨离垄台的影响。进一步探究深松铲作用下垄上秸秆运动规律并分析其扰动比阻(秸秆扰动力矩与深松铲阻力之比)。仿真结果表明:秸秆距垄台中心距离对秸秆位移中的水平侧向运动的影响最大;秸秆水平侧向位移随着秸秆与机具前进方向夹角增大呈减小趋势;根茬状态影响秸秆位移的主次顺序依次为:根茬挑起、根茬一侧切割、无根茬、根茬中间切割;当秸秆距垄台中心距离为60 mm时,秸秆之间相互影响对秸秆位移中的前进方向运动的影响最大;当秸秆距垄台中心距离大于60 mm,秸秆前进方向位移呈增大趋势。秸秆运动的力矩变化趋势为平稳变化,后产生峰值,最后又趋于平稳;影响秸秆力矩的主次顺序依次为:根茬状态、秸秆之间相互影响、秸秆距垄台中心距离、秸秆与机具前进方向夹角。深松过程中,秸秆扰动比阻在切割根茬一侧时达到最大值0.152 mm。田间对比试验结果表明,仿真模型得到的秸秆总位移、水平侧向、前进方向和垂直方向位移与田间试验值的误差分别为0.36%~9.67%、0.16%~12.31%、0.56%~10.11%和0.43%~4.63%,秸秆力矩的误差为0.16%~11.06%。研究结果可为深松铲设计以及优化提供一定的理论依据。  相似文献   
8.
以混沌理论为基础,通过试验研究滚动轴承摩擦力矩时间序列的非线性特征评估问题,为精确计算滚动轴承摩擦力矩的动态性能奠定基础.用关联维数标准差刻画摩擦力矩的不确定性,用关联维数均值描述摩擦力矩非线性特征的演变历程.研究表明,滚动轴承属于确定的非线性动力学系统,但其摩擦力矩呈现出明显的不确定性.随着转速的增加,滚动轴承摩擦力矩关联维数标准差与均值都呈现出非线性增大的趋势.  相似文献   
9.
为有效解决目前机械传动系统中选用电机时功率裕度过大而普遍存在的能源利用效率较低问题,提出一种基于三相异步电机鼠笼转子的异步磁力耦合器(squirrel cage asynchronous magnetic coupler,SCAMC)。结合SCAMC具体结构特点,采用标量磁位法及二维场边界条件,建立气隙磁场数理模型;在气隙磁通密度中引入时间变量,推导出感生电流随时间变化的表达式;基于电流叠加性,将笼条电流折算到转子表面,并沿圆周方向对感生电流所形成的洛伦兹力进行积分,建立了SCAMC的电磁转矩模型。基于上述理论及技术基础,设计并制造出一台37 k W SCAMC样机,并对其机械特性进行理论计算、仿真验证及试验测试。结果表明:转差率相同时,所得的仿真及试验数据与理论计算值相比,误差不超过5%;SCAMC与同容量的三相异步电机相比,线性工作区更宽,过载能力更强,但其机械特性偏软,可有效缓解负载对电机的冲击。该研究可为磁力耦合器在大惯量、难启动及经常性过载机械设备中的应用提供参考。  相似文献   
10.
单轨道山地果园运输机齿条齿形优选   总被引:1,自引:2,他引:1  
为减小单轨道山地果园运输机能耗及提高运输效率,该文基于动力学理论建立了运输机驱动轮与轨道齿条啮合的动力学模型,并设计、加工制造了链轮齿形齿条、销轮齿形齿条、摆线齿形齿条。以运输机驱动轮旋转角速度、轨道坡度、齿条齿形为考察因素,以驱动轮与不同齿形齿条啮合时所需提供的驱动扭矩为评价指标,探究齿条齿形对单轨道山地果园运输机力学性能的影响,得到在相同条件下驱动轮与链轮齿形齿条啮合时的驱动扭矩最小,且波动幅度最小。在驱动轮转速为+88.08 rad/s、轨道坡度分别为+0?、+6?、+12?时,驱动轮与链轮齿形齿条啮合时的驱动扭矩均值较驱动轮与圆弧齿形齿条啮合时的驱动扭矩均值分别减小33.82%,33.45%,21.59%;在驱动轮转速为-88.08 rad/s、轨道坡度分别为-0?、-6?、-12?时,驱动轮与链轮齿形齿条啮合时的驱动扭矩均值较驱动轮与圆弧齿形齿条啮合时的驱动扭矩均值分别减小35.55%,27.24%,30.43%。试验结果表明,链轮齿形齿条综合性能最优,较圆弧齿形齿条更适宜用于单轨道山地果园运输机的轨道运输中。该研究为单轨道山地果园运输机轨道的结构优化设计提供了参考。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号