首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
农学   19篇
农作物   1篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2005年   1篇
  2004年   1篇
  2001年   1篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
排序方式: 共有20条查询结果,搜索用时 109 毫秒
1.
The F1 AABBRHch hybrids studied here were produced by crosses between the Portuguese triticale cultivar 'Douro' (AABBRR) and the tritordeum line HT9 (AABBHchHch). Fluorescent in situ hybridization performed with genomic DNA probes genomic in situ hybridization (GISH) from rye and Hordeum chilense allowed the unequivocal parental genomes discrimination in all hybrids. Among 55 plants, one presented a spontaneous wheat–rye translocation which was successfully detected after GISH. Recombinant chromosomes identification was made after reprobe with pTa71 and pSc119.2. Nine rDNA loci were detected by pTa71 and pSc119.2 identified the chromosome arms involved in the translocation, after comparing the observed hybridization patterns with those described by several authors. We identified the spontaneous wheat–rye translocation as being the 7BS/7RL. Many wheat–rye translocations have been found (e.g. 1BL.1RS and 1AL.1RS), but as far as we know, this is the first time that this translocation is reported. We considered it helpful for wheat breeding programmes as it could provide the transference of interesting agronomic characteristics from rye (e.g. leaf rust resistance) to wheat.  相似文献   
2.
Summary A self-fertile trigeneric hybrid in the Triticeae involving species from the Hordeum, Triticum and Secale genera has been produced. The trigeneric hybrid was obtained by crossing octoploid triticale (x Triticosecale Wittmack) with octoploid tritordeum (H. chilense × T. aestivum amphiploid). The trigeneric hybrid presented a genome constitution AABBDDRHch and 2n=8X=56 chromosomes. The cytogenetical analyses showed no chromosome instability nor homeologous pairing between Hordeum and Secale chromosomes. In the F2 generation the chromosome number ranged from 42 to 52. Within this range, the plants with smaller numbers of chromosomes were more frequent. A preferential transmission of rye chromosomes could be inferred.  相似文献   
3.
Summary Hexaploid and octoploid tritordeums and their parents Hordeum chilense and Triticum spp. were screened for resistance to isolates of wheat and barley yellow and brown rusts. All H. chilense lines were highly resistant to both wheat and barley brown rust, few lines were susceptible to wheat yellow rust while susceptibility to barley yellow rust was common. In general the resistance of tritordeum is predominantly contributed by the wheat parent and apparently the genes for resistance in H. chilense are inhibited in their expression by the presence of the wheat genome.Abbreviations WYR wheat yellow rust - WBR wheat brown rust - BYR barley yellow rust - BBR barley brown rust  相似文献   
4.
Summary Biochemical, karyological and morphological characterization of Triticum turgidum conv. durum/Hordeum chilense addition forms was carried out. Nine H. chilense isozyme markers, belonging to ACPH, CPX, EST, PGM, 6-PGD, GOT and MDH enzymatic systems, were used to identify the chilense chromosomes in 50 monosonic or polysomic addition forms. Several morphological traits were associated with the presence of chilense chromosome in the complement. The transmission frequencies of addition chilense chromosomes were also investigated in the offspring of various crosses.  相似文献   
5.
Hexaploid tritordeum, the amphiploid Hordeum chilense x Triticum turgidum conv. durum has a higher grain carotene content than durum wheat. In order to decide strategies for introgressing this character into durum wheat, the effect on the carotene content of tritordeum synthesized with H. chilense and durum wheat differing in carotene content was analysed. Carotene content was evaluated in 35 primary tritordeum lines and their parents, 27 H. chilense accessions and 19 durum wheat cultivars. Some amphiploids have either one barley or wheat parent in common. In general, the influence of H. chilense is more important than that of wheat in the amphiploid carotene content. Nevertheless, the interactions between both parents on the amphiploid carotene content are also important.  相似文献   
6.
Tritordeum (X Tritordeum Ascherson et Graebner) is a synthetic amphiploid belonging to the Triticeae tribe, which resulted from crosses between Hordeum chilense and wheat. It presents useful agronomic traits that could be transferred to wheat, widening its genetic basis. In situ hybridisation with total genomic DNA from H. chilense and cloned, repetitive DNA sequences (pTa71 and pAs1) probes were used to discriminate the parental origin of all chromosomes, to analyse the chromosome pairing and to identify the chromosomes in pollen mother cells (PMCs) at metaphase I of the tritordeum line HT251 (HchHchDD, 2n = 4x = 28). The H. chilense total genomic DNA and the ribosomal sequence pTa71 probes, allowed the unequivocal discrimination of the 14 chromosomes of Hch genome-origin and the 14 chromosomes of D genome-origin. Chromosome pairing analysis revealed meiotic irregularities such as reduced percentage of PMCs with complete homologous pairing, high frequency of univalents, most of H. chilense-origin and a reduced frequency of intragenomic multivalents from both genomes. The H. chilense genome revealed high meiotic instability. After individual chromosome identification at metaphase I with the pAs1 probe, we found the occurrence of pairing between chromosomes of different homoeology groups. The possible interest of the tetraploid tritordeum in the improvement of other Triticeae species is also discussed.  相似文献   
7.
Hexaploid tritordeum is an amphiploid derived from the cross between Hordeum chilense and durum wheat. This amphiploid has shown potential for bread making, which has been associated to the prolamins from H. chilense. The role of each prolamin subunit on the gluten strength in tritordeum has been evaluated. Advanced progenies from two hexaploid tritordeum crosses were analysed for prolamins composition and gluten strength. Six loci were found for the prolamins synthesised at the Hch genome, which showed significant effects on gluten strength. Although these tritordeum lines represent only a small proportion of the genetic variability available in the development programme for this new crop, a certain degree of variation for prolamins composition was detected. In fact, up to three allelic variants have been detected for some loci, which have shown different effect on gluten strength in tritordeum. Each of these six loci appeared on the same linkage group that corresponded to chromosome 1Hch. The search of new variants for these loci could be useful for tritordeum quality breeding and, using tritordeum as a bridge species, this genetic variability could be introgressed into bread wheat. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
8.
Seed set over three years in crosses between three tritordeums used as female parents and four triticale lines, showed that there are significant differences in crossability attributable to both parents and that most of these differences are consistent over the three years. When used as the female parent tritordeum line HT67 had an average seed set of 29.62%, tritordeum line HT9 an average of 12.73%, and tritordeum line HT31 an average of only 6.58% averaged over the four triticales lines used as pollinators. These data show genotype effect that is highly significant (P < 0.001) both for tritordeum and triticale genotypes and highly significant (P < 0.001) female ×year, male × year and female × pollinator interactions. The behaviour of F1 tritordeum hybrids when crossed with one of the triticale pollinators supports the conclusion that the parents' crossability behaviour is genetically controlled. Analysis of segregation ratio of F2 hybrids plants from high and low crossability tritordeum genotypes crossed with the same triticale pollinator genotype is consistent with 9:3:3:1 ratio. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
9.
Hexaploid tritordeum (XTritordeumAscherson et Graebner) is the amphiploid obtained from the cross between a South American wild barley (Hordeum chilenseRoem. et Schulz.) and durum wheat (Triticum turgidumconv.durumDesf. em. M.K.). The bread making characteristics of eight lines of hexaploid tritordeum have been analysed, together with those of one bread wheat cultivar. The results indicated that, in general, the tritordeums yielded flours with quality properties similar to those of bread wheat, although their rheological and baking characteristics were slightly poorer. Despite the small number of samples, a range of variation was shown for some quality characters. This intra-specific variability suggests that, using well-established breeding procedures, it may be feasible to produce better quality tritordeums.  相似文献   
10.
R.S. Chauhan  B.M. Singh 《Euphytica》1997,96(3):327-330
Reactions of Hordeum chilense accessions H1 and H7 and their amphiploids, HT8, HT9 and HT28 (named as tritordeum) alongwith wheat lines, T22, T24 and T59 used in their synthesis, were studied for resistance to the Karnal bunt pathogen (Tilletia indica) of wheat. Both the accessions of H. chilense and one tritordeum line, HT8, were rated as highly resistant with zero co-efficient of infection, whereas the other two tritordeum lines HT28 and HT9 were rated as moderately susceptible and susceptible with 5.2 and 10.5 co-efficients of infection, respectively, compared to reaction of the wheat lines involved in their synthesis. Karnal bunt infection was maximum on the susceptible wheat cultivar WL-711 with 24.3 co-efficient of infection. All the wheat lines involved in the synthesis of amphiploids were susceptible to Karnal bunt except, T59 (Triticum sphaerococcum) (6X), which showed a moderate level of resistance. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号