首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  国内免费   2篇
基础科学   2篇
  3篇
综合类   1篇
畜牧兽医   2篇
  2020年   1篇
  2017年   3篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
基于机器学习算法的土壤有机质 质量比估算   总被引:2,自引:0,他引:2  
为快速高效地估测干旱、半干旱地区土壤有机质(soil organic matter, SOM)质量比,提出了一种结合竞争适应重加权法(CARS)和随机森林(RF)的估测模型.以内陆干旱区艾比湖流域为研究区,测定土壤高光谱反射率和SOM质量比,经预处理后,利用CARS对原始光谱(R)、一阶导数(R′)、吸光度(log(1/R))及吸光度一阶导数[log(1/R)]′4种光谱变量的可见-近红外光谱进行筛选,并结合RF算法,建立全谱段RF模型与CARS-RF模型.结果表明,基于CARS方法对光谱进行变量筛选后,得出4种光谱变量的优选变量集个数分别为35,26,34和121;在4种光谱变量中,R′和[log(1/R)]′的SOM估测模型精度较高,以[log(1/R)]′为基础数据获得的模型精度最高;CARS-RF模型精度优于全谱段RF模型,模型验证集决定系数(R2)、均方根误差(RMSE)、相对分析误差(RPD)分别为0.881,6.438 g/kg和2.177.该研究在预处理的基础上通过变量优选,应用较少的变量个数获得较高的估测精度,为干旱、半干旱区SOM高光谱估测提供了适宜高效的方法.  相似文献   
2.
为了探讨利用近红外漫反射光谱技术(NIDRS)快速定量分析饲料添加剂L-赖氨酸硫酸盐中L-赖氨酸含量的可行性,本试验在全国范围内收集了具有代表性的L-赖氨酸硫酸盐添加剂76个,采用国家标准方法对样品中的L-赖氨酸含量进行化学赋值;用光栅型近红外光谱仪扫描L-赖氨酸硫酸盐样品,获取了不同物理状态下样品的近红外光谱图。依据L-赖氨酸含量将样品分为定标集和验证集,运用适当的光谱预处理方法,采用竞争性自适应重加权(CARS)算法结合偏最小二乘法(PLS)建立了L-赖氨酸硫酸盐的近红外定标分析模型,并将该模型与全波长模型进行了比较。结果表明:用烘干、60目粉碎后的样品结合CARS算法建立的定标模型最优,定标集校正决定系数(R2C)为0.954,校正集标准偏差(SEC)为0.510,交互验证标准偏差(SECV)为0.659;验证集预测决定系数(R2P)为0.952,预测标准偏差(SEP)为0.554,相对分析误差(RPD)值为3.83。由此可见,NIDRS定量分析L-赖氨酸硫酸盐具有一定可行性,对于丰富我国氨基酸盐及其他氨基酸制品的快速检测方法具有实际的应用意义。  相似文献   
3.
高光谱技术结合CARS算法预测土壤水分含量   总被引:4,自引:2,他引:2  
高光谱技术已成为预测土壤含水量(soil moisture content,SMC)的重要方法,但因土壤高光谱中包含了大量冗余信息和无效信息,不仅导致SMC的高光谱估算模型复杂度高,而且影响了模型的预测精度。因此,该研究在室内设计SMC梯度试验,测定土壤高光谱反射率,经Savitzky-Golay平滑(Savitzky-Golay smoothing,SG)和连续统去除(continuum removal,CR)预处理后,基于竞争适应重加权采样(competitive adaptive reweighted sampling,CARS)方法分别优选出土壤在全部SMC的水分敏感波长变量,确定适用于土壤在全部SMC的共性波长变量,以其为优选变量集,采用偏最小二乘(partial least squares regression,PLSR)回归方法建立模型并进行验证。结果表明,SG和CR预处理后的光谱曲线在450、1 400、1 900、2 200 nm附近吸收峰的形状特征凸显;基于CARS方法对土壤在不同SMC的光谱曲线进行变量优选后,得出优选变量集为443~449、1 408~1 456、1 916~1 943、2 209~2 225 nm;CARS-PLSR模型性能优于全波段PLSR模型,模型预测R2、均方根误差、相对分析误差分别为0.983、0.0144、8.36,不仅提升了预测精度和预测能力,而且降低了变量维度和模型复杂度。该文通过优选土壤水分的敏感波段,有效提高了SMC预测模型的鲁棒性,为快速准确评估农田墒情提供了新途径,为开发田间SMC测定传感器提供了理论依据。  相似文献   
4.
提高母猪年生产力的关键营养技术   总被引:6,自引:0,他引:6  
本文总结了“十二五”期间国家生猪产业技术体系在母猪营养与饲养管理方面开展的研究和技术推广工作,结合国内外母猪营养研究的最新报道,对提高母猪年生产力的关键营养和饲养技术进行综述.  相似文献   
5.
近红外光谱联合CARS-PLS-LDA的山茶油检测   总被引:3,自引:0,他引:3  
为了寻找快速判别山茶油掺假的检测方法,本研究利用近红外光谱技术对掺杂大豆没油山茶油进行掺假检测研究.试验在350~1 800 nm波段范围内采集样本的透射光谱,利用CARS方法筛选重要的波长变量,应用偏最小二乘-线性判别分析(PLS-LDA)建立山茶油掺假的判别模型,并与未经变量优选的判别模型进行比较.结果表明,近红外光谱技术联合CARS-PLS-LDA方法可以有效判别纯山茶油和掺假山茶油,校正集、预测集及独立样本组样本的判别正确率、灵敏度及特异性均为100%.CARS-PLS-LDA判别模型性能优于未经变量优选的判别模型,表明CARS方法可以有效筛选重要波长变量,能简化判别模型及提高判别模型的稳定性和判别精度.本研究可为山茶油掺假快速检测提供理论依据.  相似文献   
6.
基于高光谱成像的马铃薯叶片叶绿素分布可视化研究   总被引:3,自引:0,他引:3  
郑涛  刘宁  孙红  龙耀威  杨玮  ZHANG Qin 《农业机械学报》2017,48(S1):153-159, 340
针对马铃薯作物叶片进行了叶绿素含量无损检测技术及分布图绘制方法研究,用以指示作物长势并指导精细化管理。首先利用高光谱成像技术采集了65个马铃薯叶片的400个样本点高光谱图像和相应的SPAD值,提取并计算叶绿素测量区域的叶片平均光谱后,分别采用蒙特卡罗无信息变量消除算法(MC-UVE)和自适应重加权算法(CARS)筛选出了12个和23个叶绿素含量敏感波长,建立了马铃薯叶片叶绿素含量偏最小二乘(PLS)回归模型。建模结果如下:基于MC-UVE算法筛选的12个敏感波长的PLSR诊断模型,建模精度R2C为0.79,验证精度R2V为0.73;基于CARS算法筛选的23个敏感波长建立的PLSR诊断模型,建模精度R2C为0.82,验证精度R2V为0.80。择优选取CARS-PLSR模型计算马铃薯叶片每个像素点的叶绿素含量,从而利用伪彩色绘图绘制了马铃薯叶片叶绿素含量可视化分布图,最终实现马铃薯叶片含量无损检测以及叶绿素分布可视化表达,以期为后续马铃薯作物大田冠层叶绿素分布诊断提供支持。  相似文献   
7.
CARS-SPA算法结合高光谱检测马铃薯还原糖含量   总被引:3,自引:0,他引:3  
以竞争性重加权自适应选择算法(CARS)结合连续投影算法(SPA)选择马铃薯还原糖含量特征波长,共制备238个样本,比色法测定马铃薯还原糖含量,选择190个样本作校正集,48个样本作验证集,与全光谱和经典变量提取方法比较。结果表明,CARS-SPA算法筛选波段效果最佳,相比于全谱建模其参与建模波长点由203个减少到17个,模型验证集决定系数r~2由0.8464提高到0.8965,均方根误差(RMSEP)由0.0758降到0.0490。结果表明,采用CARS-SPA结合高光谱成像技术检测马铃薯还原糖含量结果可行。  相似文献   
8.
小波变换耦合CARS算法提高土壤水分含量高光谱反演精度   总被引:4,自引:3,他引:1  
为实现干旱地区土壤水分含量(soil moisture content,SMC)的快速监测,该文以渭干河-库车河绿洲为靶区,采用小波变换(wavelet transform,WT)对反射光谱进行1~8层小波分解,通过相关性分析确定最大分解层数,再通过竞争性自适应重加权(competitive adaptive reweighted sampling,CARS)滤除冗余变量,筛选出与SMC相关性较好的波长变量,并叠加各层特征光谱的优选波长变量作为最优变量集,用偏最小二乘回归(partial least squares regression,PLSR)构建土壤水分含量预测模型并进行分析.结果显示:1)小波分解过程中,土壤反射率与SMC的相关性不断增强,到小波变换第6层分解(L6)处达到最高,因此小波变换最大分解层数为6层分解;2)通过对土样进行WT-CARS耦合算法筛选出变量,得出的最优变量集包括400~500、1 320~1 461、1 851~1 961、2 125~2 268 nm区域之间共131个波长变量;3)相对于全波段预测模型,各层特征光谱的CARS优选变量预测模型的精度均高,并且基于最优变量集的预测模型的精度最高,该模型的建模集均方根误差0.021、建模集决定系数0.721、预测集均方根误差0.028、预测集决定系数0.924、相对分析误差2.607.说明WT-CARS耦合算法使其在建立模型时尽可能少地损失光谱细节、较为彻底的去除噪声,同时还能对无信息变量进行有效去除,为该研究区SMC的预测提供新的思路.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号