首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   637篇
  免费   23篇
  国内免费   38篇
林业   46篇
农学   33篇
  371篇
综合类   119篇
农作物   24篇
畜牧兽医   44篇
园艺   47篇
植物保护   14篇
  2024年   4篇
  2023年   11篇
  2022年   14篇
  2021年   13篇
  2020年   15篇
  2019年   13篇
  2018年   17篇
  2017年   31篇
  2016年   31篇
  2015年   22篇
  2014年   28篇
  2013年   55篇
  2012年   43篇
  2011年   39篇
  2010年   36篇
  2009年   57篇
  2008年   32篇
  2007年   42篇
  2006年   41篇
  2005年   28篇
  2004年   22篇
  2003年   13篇
  2002年   6篇
  2001年   12篇
  2000年   14篇
  1999年   7篇
  1998年   8篇
  1997年   10篇
  1996年   6篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   5篇
  1991年   5篇
  1990年   5篇
  1989年   5篇
  1986年   1篇
  1983年   1篇
排序方式: 共有698条查询结果,搜索用时 17 毫秒
1.
丛枝菌根真菌对芋组织培养苗生长的影响   总被引:9,自引:0,他引:9  
李敏  刘鹏起  刘润进 《园艺学报》2002,29(5):451-453
 于温室盆栽条件下研究了丛枝菌根(AM) 真菌Gigaspora rosea、Glomus mosseae 和Glomus versi-forme 对芋(Colocasia esculenta) 组织培养苗移栽成活率、矿质营养、光合速率及生长的影响。结果表明, 接种AM真菌能提高芋组织培养幼苗移栽成活率和叶片光合速率, 降低气孔阻力; 其叶片和根内氮、磷、钾含量和生长量显著高于不接种对照。认为接种有效AM真菌是促进组织培养苗健康生长的重要技术。  相似文献   
2.
Nutrient‐rich biochar produced from animal wastes, such as poultry litter, may increase plant growth and nutrient uptake although the role of direct and indirect mechanisms, such as stimulation of the activity of mycorrhizal fungi and plant infection, remains unclear. The effects of poultry litter biochar in combination with fertilizer on mycorrhizal infection, soil nutrient availability and corn (Zea mays L.) growth were investigated by growing corn in a loam soil in a greenhouse with biochar (0, 5 and 10 Mg/ha) and nitrogen (N) and phosphorus (P) fertilizer (0, half and full rates). Biochar did not affect microbial biomass C or N, mycorrhizal infection, or alkaline phosphomonoesterase activities, but acid phosphomonoesterase activities, water‐soluble P, Mehlich‐3 Mg, plant height, aboveground and root biomass, and root diameter were greater with 10 Mg/ha than with no biochar. Root length, volume, root tips and surface area were greatest in the fully fertilized soil receiving 10 Mg/ha biochar compared to all other treatments. The 10 Mg/ha biochar application may have improved plant access to soil nutrients by promoting plant growth and root structural features, rather than by enhancing mycorrhizal infection rates.  相似文献   
3.
The significance of arbuscular mycorrhizal fungi (AMF) in soil remediation has been widely recognized because of their ability to promote plant growth and increase phytoremediation efficiency in heavy metal (HM) polluted soils by improving plant nutrient absorption and by influencing the fate of the metals in the plant and soil. However, the symbiotic functions of AMF in remediation of polluted soils depend on plant–fungus–soil combinations and are greatly influenced by environmental conditions. To better understand the adaptation of plants and the related mycorrhizae to extreme environmental conditions, AMF colonization, spore density and community structure were analyzed in roots or rhizosphere soils of Robinia pseudoacacia. Mycorrhization was compared between uncontaminated soil and heavy metal contaminated soil from a lead–zinc mining region of northwest China. Samples were analyzed by restriction fragment length polymorphism (RFLP) screening with AMF-specific primers (NS31 and AM1), and sequencing of rRNA small subunit (SSU). The phylogenetic analysis revealed 28 AMF group types, including six AMF families: Glomeraceae, Claroideoglomeraceae, Diversisporaceae, Acaulosporaceae, Pacisporaceae, and Gigasporaceae. Of all AMF group types, six (21%) were detected based on spore samples alone, four (14%) based on root samples alone, and five (18%) based on samples from root, soil and spore. Glo9 (Rhizophagus intraradices), Glo17 (Funneliformis mosseae) and Acau3 (Acaulospora sp.) were the three most abundant AMF group types in the current study. Soil Pb and Zn concentrations, pH, organic matter content, and phosphorus levels all showed significant correlations with the AMF species compositions in root and soil samples. Overall, the uncontaminated sites had higher species diversity than sites with heavy metal contamination. The study highlights the effects of different soil chemical parameters on AMF colonization, spore density and community structure in contaminated and uncontaminated sites. The tolerant AMF species isolated and identified from this study have potential for application in phytoremediation of heavy metal contaminated areas.  相似文献   
4.
通过从分布于山西、陕西和内蒙古三省区12个样地中的柠条锦鸡儿(Caragana korshinskii)根围采集土样和根样,系统研究了柠条锦鸡儿AM真菌种类组成和生态分布.试验结果表明,在已分离鉴定出的12种AM真菌中,球囊霉属(Glomus)6种,无梗囊霉属(Acaulospora)3种,巨孢囊霉属(Gigaspora)1种,盾巨孢囊霉属(Scutellospora)2种,而摩西球囊霉(Glomus mosseae)和缩球囊霉(Glomus constrictum)是优势菌种. AM真菌能与柠条锦鸡儿形成良好的共生结构,AM真菌平均总定殖率59.98%,平均孢子密度为830.59个/100 g土.不同采样地之间的AM真菌种类和分布差异显著.孢子密度与菌丝和总定殖率呈显著正相关;孢子密度与土壤速效N呈极显著正相关,丛枝定殖率与土壤有机质呈显著正相关,总定殖率和菌丝定殖率与土壤pH呈极显著正相关.  相似文献   
5.
丛枝菌根(Arbuscular mycorrhizal,AM)真菌对辣椒疫病等土传病害具有生防潜力,但由于难以纯培养而未能实现规模化生产应用,如能调动土著AM真菌的抑病功能则对实际生产具有重要指导意义。依托重庆石柱辣椒科技园,研究设施大棚中间作玉米对土著AM真菌生长及辣椒疫病防治的影响。结果表明,与辣椒单作相比,间作玉米处理辣椒根系AM真菌侵染率、根际AM真菌数量与土壤磷酸酶活性以及小区作物养分总吸收量均显著提高,辣椒疫病发病率与病情指数、单株辣椒的磷吸收量及果实生物量均显著下降,其中种植密度更高的等垄宽间作处理两种作物根系AM真菌侵染率、小区玉米产量及作物养分总吸收量均显著高于等行距间作处理,辣椒疫病发病率与之正好相反。设施环境下间作玉米或能通过促进AM真菌生长及其对辣椒根系的侵染来增强其对辣椒疫病的防治功效,其中等垄宽间作处理具有更好的经济效益。  相似文献   
6.
The composition of arbuscular mycorrhizal fungi (AMF) communities found in agricultural systems has been found to be very different to that of forest. The implications of this, if any, for the restoration of indigenous forest on ex-agricultural land is poorly understood. This study investigated the effect that AMF communities isolated from ex-agricultural and forest soils have on the growth of an indigenous New Zealand tree species (Podocarpus cunninghamii). The forest AMF community was isolated from a remnant stand of P. cunninghamii forest and the ex-agricultural AMF from a retired grazing grassland. In addition, the study examined how the two AMF communities affected the competitiveness of P. cunninghamii when grown in competition with an invasive grass species (Agrostis capillaris), which is frequently dominant on ex-agricultural land in New Zealand. P. cunninghamii growth was significantly decreased by inoculation with ex-agricultural AMF compared to forest AMF. Furthermore, the forest AMF community was able to significantly increase P. cunninghamii root production when in competition with A. capillaris. The findings suggest that when attempting to restore indigenous forest on ex-agricultural land, inoculation of tree seedlings with appropriate forest AMF may improve their growth and survival.  相似文献   
7.
In the present study, the effects of inoculation of biofertilizers (phosphorus-solubilizing arbuscular mycorrhizal (AM) fungi (AMF), Glomus intraradices, and potassium-mobilizing bacterium (KMB), Frateuria aurantia) in combination with chemical fertilizers nitrogen, phosphorus, and potassium (NPK) on growth, yield, nutrient acquisition, and quality of tobacco were observed in pot culture. Factorial combinations of biofertilizers (AMF and KMB) and chemical fertilizer (NPK) alone and in combination were applied to see the effects on growth, biomass, nutrient acquisition, and leaf quality in tobacco. Results showed that bioinocula applied either singly or in combination did not significantly enhance soil availability of P and K, indicating their unsuitability for direct application. Application of chemical fertilizer in combination with both AMF and KMB strains consistently increased availability of P and K in the soil, improved leaf quality parameters, and enhanced plant growth and vigor, suggesting the potential use of AMF and KMB as biofertilizers in sustainable tobacco crop production.  相似文献   
8.
The effects of organic manure, mineral fertilizer (NPK), and P-deficiency fertilization (NK) on the individual biomass of young wheat plants, arbuscular mycorrhizal (AM) colonization in wheat root systems, population sizes of soil organic phosphorus mineralizing bacteria (OPMB) and inorganic phosphate solubilizing bacteria (IPSB) as well as soil P-mineralization and -solubilization potential were investigated in a long-term (18-year) fertilizer experiment. The experiment included five treatments: organic manure, an equal mixture of organic manure and mineral fertilizer, fertilizer NPK, fertilizer NK, and the control (without fertilization). Plant biomass, population sizes of soil OPMB and IPSB were greatly increased (P<0.05) by the application of organic manure and slightly increased by the balanced application of mineral fertilizer, while undiminished AM colonization in wheat root system was only observed in the case of the NK treatment. Compared to balanced fertilization, P-deficiency fertilization resulted in a significant increase (P<0.05) of OPMB-specific mineralization potential (soil P-mineralization potential per OPMB cell) and highest IPSB-specific solubilization potential (soil P-solubilization potential per IPSB cell), suggesting that OPMB and IPSB are likely more metabolically active in P-deficiency fertilized soils after long-term fertilizer management, and mycorrhizal plants are more dependent on AM in P-poor soils than in P-fertilized soils. Our results also showed the different effects of mineral fertilizer versus organic manure on soil P-mineralization and -solubilization potentials, as well as specific potentials of OPMB and IPSB in arable soils.  相似文献   
9.
通过灭菌盆栽接种试验,研究接种丛枝菌根真菌Glomus caledonium对转双价(Bt+CpTI)棉和常规棉石远321的侵染率和植株养分含量的影响。结果表明,在观测期间,转双价棉与同源常规棉之间根系丛枝菌根真菌侵染率在同一时期均无显著差异,但植株氮、磷养分含量在一些时期明显不同,其变化随棉花品种、生育期不同而不同。转双价棉苗期根系全氮和蕾期、吐絮期地上部全磷以及苗期、蕾期和花铃期根系全磷含量显著高于常规棉(P<0.05),而蕾期地上部全氮和吐絮期根系全氮显著低于常规棉(P<0.05)。聚类分析表明,丛枝菌根真菌侵染率和植株养分含量变化主要受生长时期的影响,转双价棉种植对其影响是非常有限的。  相似文献   
10.
We aimed to investigate the effects of inoculating Panax ginseng C.A. Meyer seedlings with arbuscular mycorrhizal fungi (AMF) by examining the root colonization, plant nutrition uptake, growth characteristics, and soil aggregation of P. ginseng seedlings inoculated at the time of transplantation. At 16 weeks, the AMF spore density per 30 g of fresh mycorrhizosphere in seedlings inoculated with AMF (AMF+ seedlings) was 256.8 and that in seedlings not inoculated with AMF (AMF− seedlings) was 186.3, respectively. The colonization rate of AMF in the lateral roots of AMF+ seedlings was approximately 19% higher than that in the lateral roots of AMF− seedlings. The patterns of AMF colonization in ginseng roots were similar to those of the Paris-type mycorrhizal association. Plant growth characteristics, such as plant height, root length, leaf area, number of lateral roots, fresh weight of shoots and roots, and chlorophyll content, were significantly enhanced in AMF+ seedlings compared to AMF− seedlings. The macronutrient content (P, K, and Ca) and micronutrient content (Cu, Fe, and Zn) of both shoots and roots were also significantly higher in AMF+ seedlings compared to AMF− seedlings. Furthermore, glomalin content and soil aggregation were significantly enhanced in AMF inoculated areas. Our results indicate that AMF inoculation may enhance the growth of ginseng seedlings by improving the uptake of mineral nutrients and the soil structure in mycorrhizosphere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号