首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  4篇
  2007年   2篇
  2000年   1篇
  1996年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
The study was undertaken to quantify the distribution of soil in different size fractions of water-stable aggregates, and organic C, total N, and total P associated with these aggregates, along a gradient of forest-savanna-cropland in the Indian dry tropics. The effect of residue (wheat straw) amendment under dryland cultivation was also investigated. Proportions of macroaggregates (>0.3 mm) were highest in the forest and lowest in the cropland soil and ranged from 58–66% in forest, to 55% in savanna and 25–36% in cropland. In contrast, microaggregates (<0.3 mm) were highest in cropland (64–75%), followed by savanna (45%), and lowest in forest soil (34–42%). Organic C, total N, and total P associated with the macroaggregates ranged from 6.52–29.56, to 0.62–2.44 and 0.06–0.15 g kg-1 soil, respectively, while the respective values in microaggregates were 4.99–22.11, 0.42–2.01, and 0.07–0.19 g kg-1 soil. This study indicates that land-use changes (conversion of forest into savanna and cropland) reduce the organic matter input to the soil and the proportion of macroaggregates. The application of wheat straw did not significantly influence the organic C and total N levels (P>0.05) in the short term, although the proportion of macroaggregates increased, indicating an improvement in soil structure. Thus soil degradation after conversion of natural systems to cropland can be arrested up to some extent by residue input to the soil.  相似文献   
2.
Several studies have shown the importance of organic material in the formation and stability of soil aggregates. The organic matter of soil (SOM) is affected among other factors by the application of farmyard waste and compost, as well as tillage and crop rotation. This paper examines the aggregation and stability of a sandy soil (Haplic Fluvisol) in the valley of Mexico when treated with either 40 Mg ha−1 of compost or urea (80 kg ha−1 of N) and sown to amaranth (Amaranthus hypochondriacus L.) under dryland conditions. The application of compost resulted in a significantly larger proportion of aggregates in the fractions >1 mm (1.0–2.0, 2.0–2.3, 2.3–4.7 mm) than in the smaller fraction (<1 mm). However the stability of the macroaggregates >1 mm in the compost treatment was not higher than in contrasting treatments which did not include organic matter. Compost, which was applied under drought conditions, did not increase the aggregate stability of the soil probably because of the restricted transformation of the compost and microorganism activity.  相似文献   
3.
Crop residue retention is important for sequestering soil organic carbon (SOC), controlling soil erosion, and improving soil quality. Magnitude of residue management impacts on soil structural properties and SOC sequestration is, however, site specific. This study assessed long-term (10 year) impacts of three levels (0, 8, and 16 Mg ha−1 on a dry matter basis) of wheat (Triticum aestivum L.) straw applied annually on SOC concentration and physical properties of the bulk soil and individual 5- to 8-mm aggregates for the 0- to 50-cm soil depth under no-till (NT) on a Crosby silt loam (fine, mixed, active, mesic Aeric Epiaqualfs) in central Ohio. This study also quantified relationships between soil properties and straw-induced changes in SOC concentration. Changes in soil properties due to straw mulching were mostly confined to the upper 5 cm of the soil. Mulching increased SOC concentration, but it did not significantly change cone index (CI) and shear strength (SHEAR). Within the upper 0–5-cm soil depth, mulching decreased bulk density (ρb) by 40–50%, aggregate density (ρagg) by 30–40%, and particle density (ρs) by 10–15%, and increased tensile strength (TS) of aggregates by up to 14 times as compared to unmulched soil. At the same depth, soil with mulch retained >30% more water than soil without mulch from 0 to −1500 kPa potentials. The SOC amount was 16.0 Mg ha−1 under no straw, 25.3 Mg ha−1 under 8 Mg ha−1 straw, and 33.5 Mg ha−1 under 16 Mg ha−1 straw in the 0- to 10-cm depth. Below 10 cm, differences in SOC pool between mulched and unmulched soil were not significant. Overall, SOC from 0- to 50-cm depth was 82.5 Mg ha−1 for unmulched soil, 94.1 Mg ha−1 for 8 Mg ha−1 mulch, and 104.9 Mg ha−1 for 16 Mg ha−1. About 33% of C added with straw over the 10-year period was sequestered in soil. This means that 2/3 of the wheat straw applied was not converted to SOC and most probably was lost as emissions of CO2 and CH4. The annual rate of total C accrual was 1.2 Mg ha−1 in soil mulched with 8 Mg ha−1 and 2.2 Mg ha−1 in soil mulched with 16 Mg ha−1 of straw in the 0- to 50-cm depth. The percentage of macroaggregates (>5-mm) was six times higher under 8 Mg ha−1 of straw and 12 times higher under 16 Mg ha−1 compared to unmulched treatments. Macroaggregates contained greater SOC than microaggregates in mulched soil. The SOC concentration explained the variability in aggregate properties by as much as 96%. Overall, long-term straw mulching increased SOC concentration and improved near-surface aggregate properties.  相似文献   
4.
The unique capacity of fungi to efficiently sequester carbon in aerobic conditions, presents a way to maximize OC gain in agricultural systems. Oat (Avena sativa) was planted in the temperate climate of southern Ontario, Canada to study factors affecting soil organic carbon (OC). The plots varied with initial OC from 25 to 68 g kg−1 or with ground cover of differing decomposability (alfalfa (Medicago sativa) growing from seed, dried oat straw, dried hay and compost) on high OC soil (60–70 g kg−1). The soil was analysed for correlation of changes in soil aggregation, moisture, OC, fungal hyphal number and length and distribution of organic matter by mass and OC in density fractions within the growing season. At harvest, soil OC and moisture were increased only in plots with ground cover. Total hyphal length was not significantly different with ground cover treatment at harvest, and did not correlate with soil aggregation and soil OC. However, the number of hyphae with >5 μm diameter (primarily mycorrhizal fungi) correlated with % OC in ground cover plots while the number of hyphae <5 μm (primarily saprophytic fungi) correlated with % OC without ground cover in the gradient of initial soil OC. Mycorrhizal hyphae may be important to the increases in soil OC from surface treatment, although there was no treatment effect of mycorrhizal occurrence on the oat roots. This microcosm study, with growing and dried ground cover, suggests surface management may a simple and inexpensive means in agriculture to increase soil moisture and OC that benefits farmers as well as reducing atmospheric CO2.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号