首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   839篇
  免费   55篇
  国内免费   136篇
林业   32篇
农学   123篇
基础科学   171篇
  246篇
综合类   226篇
农作物   53篇
水产渔业   1篇
畜牧兽医   32篇
园艺   42篇
植物保护   104篇
  2024年   6篇
  2023年   18篇
  2022年   31篇
  2021年   33篇
  2020年   42篇
  2019年   40篇
  2018年   42篇
  2017年   57篇
  2016年   52篇
  2015年   49篇
  2014年   30篇
  2013年   73篇
  2012年   46篇
  2011年   61篇
  2010年   64篇
  2009年   84篇
  2008年   54篇
  2007年   65篇
  2006年   38篇
  2005年   30篇
  2004年   22篇
  2003年   15篇
  2002年   10篇
  2001年   10篇
  2000年   10篇
  1999年   7篇
  1998年   7篇
  1997年   7篇
  1996年   3篇
  1995年   3篇
  1994年   4篇
  1993年   4篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1987年   2篇
  1985年   1篇
  1983年   2篇
  1962年   1篇
排序方式: 共有1030条查询结果,搜索用时 15 毫秒
1.
Soil carbon (C) saturation implies an upper limit to a soil's capacity to store C depending on the contents of silt + clay and poorly crystalline Fe and Al oxides. We hypothesized that the poorly crystalline Fe and Al oxides in silt + clay fraction increased the C saturation and thus reduced the capacity of the soil to sorb additional C input. To test the hypothesis, we studied the sorption of dissolved organic carbon (DOC) on silt + clay fractions (<53 µm) of highly weathered oxic soils, collected from three different land uses (i.e., improved pasture, cropping and forest). Soils with high carbon saturation desorbed 38% more C than soils with low C saturation upon addition of DOC, whereas adsorption of DOC was only observed at higher concentration (>15 g kg?1). While high Al oxide concentration significantly increased both the saturation and desorption of DOC, the high Fe oxide concentration significantly increased the desorption of DOC, supporting the proposition that both oxides have influence on the DOC sorption in soil. Our findings provide a new insight into the chemical control of stabilization and destabilization of DOC in soil.  相似文献   
2.
The important root characteristics of root length density (RLD) and root mass density (RMD) generally differ among irrigation managements and potato cultivars. The objective of this study was to investigate the RLD and RMD variations and their functional relationships with gross potato tuber yield for two commercial potato cultivars, Agria and Sante, under different irrigation strategies. Full irrigation and water‐saving irrigation strategies, deficit and partial root drying irrigations, were applied statically (S) and dynamically (D) based on daily crop evapotranspiration. Results showed that SPRD had significantly greater RLD (3.64 cm/cm3) and RMD (132.7 μg/cm3) than other irrigation treatments. Between the potato cultivars, Agria had significantly larger values of RLD (3.50 cm/cm3) and RMD (138.7 μg/cm3) than Sante. The functional relationship between the root growth characteristics and tuber yield showed that under water‐saving irrigations, Agria increased root mass at the expense of gross tuber yield but Sante increased root mass to maintain larger gross tuber yields. However, Agria produced more roots and gross tuber yield than Sante, and it is concluded that Agria is a more drought‐tolerant potato cultivar, which is recommended for tuber production in regions where water might be scarce. It was shown that larger root production in potatoes was associated with improved tolerance to water stress.  相似文献   
3.
针对南疆地区水资源短缺、作物水分利用效率低等问题,以棉花为试验材料进行田间小区试验,在棉花现蕾期、开花期以及结铃期分别设置3个亏缺灌溉水平(W1:50%ETc,W2:65%ETc,W3:80%ETc,ETc为作物蒸发蒸腾量),以全生育期100%ETc灌溉处理为对照(CK),研究膜下滴灌条件下,不同生育期亏缺灌溉对棉花生长、产量、氮素吸收和水分利用效率的影响.结果表明:现蕾期亏水对棉花株高、叶面积指数、地上干物质生长、氮素吸收和产量有不同程度的抑制效应,但复水后补偿效应显著,其中轻度亏水(W3)在籽棉产量减少3.48%的条件下,WUE高达1.57 kg/m3,显著高于CK的1.48 kg/m3;开花期亏水,棉花的各项生长指标均有显著降低,复水后补偿效应不显著,不利于棉花生长发育;结铃期亏水对棉花地上干物质累积、氮素吸收和产量均有显著的抑制效应,但在W2和W3水平下,WUE均达1.51 kg/m3.综合考虑在保证棉花产量的同时达到节水增产的目的,可在棉花蕾期进行80%ETc灌水,其他生育阶段实施充分灌溉,来控制营养生长,促进生殖生长,获得更高的水分利用效率.  相似文献   
4.
试验结果表明谷子在—13.9Pa的负压下发芽率只有24.0%,在—16.73Pa时发芽率为16.3%。用0.5%的NM—1号抗旱剂包衣后,在—16.73Pa的负压下发芽率可达65.6%,比对照提高49.3%。同0.5%的NM—1抗旱剂在大豆现蕾期喷施叶面1次,相对收获株率为115.38%,相对千粒量为107.7%,增产率为40,27%。玉米在6叶期喷施0.5%的抗旱剂后,饱和亏减少4.09g,是对照的43.81%;干物质积累比对照快67.19%,蒸腾系数减少8.36g。  相似文献   
5.
棉花调亏灌溉的生理基础研究   总被引:8,自引:2,他引:8  
以盆栽棉花为材料,通过苗期和现蕾期不同程度的亏水处理(低、中、高三个水平),对调亏灌溉节水效应及生理机制进行了研究。结果表明:适时适度的水分亏缺可使植株旺盛的营养生长得以有效控制,株型和根冠比都更为理想。调亏期间,蒸腾速率和气孔导度都明显下降,而光合速率下降不明显,复水后光合速率和气孔导度明显恢复且接近或高于对照;此外,水分亏缺不仅影响棉桃的数量,而且影响单果重。表明适度的亏水处理可使水分利用效率明显提高,而经济产量接近或高于对照,同时节水20%以上。  相似文献   
6.
利用生态足迹和生态承载力的理论和方法,以西北干旱绿洲农业区城市张掖为例,对其可持续发展状况及程度进行了评价和度量。结果表明:张掖市2009年人均生态足迹为3.798hm2,人均承载力为1.453hm2,人均生态赤字为2.345hm2。在此基础上,对张掖市的生态可持续发展进行了评价,并提出解决对策。  相似文献   
7.
Adjustments on planting date and on the time to terminate irrigation may reduce agricultural water use. However, such management practices in regions with extreme weather conditions have the potential to negatively affect yield. A 3‐year (2012–2014) study was conducted on a clay‐loam soil in a cool, semi‐arid environment to (i) determine the response of confection sunflower to planting date and irrigation termination timing and (ii) identify the relative importance of yield components in irrigated confection sunflower across planting dates. Early May planting had considerable negative effects on all studied variables, except on the percentage of large seeds. The highest yield of total and large seeds was obtained from the late May plantings, averaging 3,777 and 3,379 kg/ha, respectively. None of the irrigation strategies affected the measured variables. However, the interaction between planting date and termination of irrigation significantly affected the 1,000‐seed weight. Our study revealed the last week of May as suitable planting period for confection sunflower in the semi‐arid north‐western region of Wyoming, USA, and that irrigation on heavy soils may be terminated as early as at R5.5 stage without a significant yield reduction. The path‐coefficient analysis indicated head diameter and the number of seeds per head as important traits that significantly influence the yield of confection sunflower across planting dates.  相似文献   
8.
A potentially significant cause of damage to grassland soils is compaction of unsaturated soil and poaching of saturated or nearly saturated soil by animal hooves. Damage is caused when an applied stress is in excess of the bearing strength of the soil and results in a loss of soil structure, macroporosity and air or water conductivity. Severely damaged soils can cause reduced grassland productivity and make grazing management very difficult for the farmer. The actual amount of soil damage that can occur during grazing is dependent on the grass cover which acts as a protecting layer, the soil water content and the characteristics of the grazing animal (weight and hoof size). Assuming that the farmer is knowledgeable about the characteristics of the grazing animal and grass cover, it would be very useful for short‐term operational farm planning to be able to predict when soil water contents were likely to be in a critical range with respect to potential hoof damage. In this study soil moisture deficits (SMDs) which can be derived from meteorological forecasts are evaluated for predicting when soil water conditions are likely to lead to hoof damage. Two contrasting Irish grassland soils were analysed using a Hounsfield servo‐mechanical vertical testing machine to simulate static (285.4 N) and dynamic (571 N) hoof loads on the soil over a range of estimated SMDs (0, 5, 10 and 20 mm). The deficits were analysed with respect to the soil volumetric water content, compression (displacement) and change in dry bulk density. The SMDs imposed in the laboratory were similar to those under field conditions and thus the methods used in this study are applicable elsewhere. The change in dry bulk density following loading (0.2–0.7 g/cm3) was linearly related to SMD (R2 ranged from 0.90 to 0.99), leading to the conclusion that a forecast of SMD can be used to predict when grassland soils are likely to be at risk of damage from grazing.  相似文献   
9.
The present study assesses the effects of 5‐aminolevulinic acid (ALA, 0, 0.1, 1 and 10 mg l?1) on the growth of oilseed rape (Brassica napus L. cv. ZS758) seedlings under water‐deficit stress induced by polyethylene glycol (PEG 6000, 0 and ?0.3 MPa). Water‐deficit stress imposed negative effects on seedling growth by reducing shoot biomass, cotyledon water potential, chlorophyll content and non‐enzymatic antioxidants (glutathione and ascorbic acid) levels. On the other hand, water‐deficit stress enhanced the malondialdehyde (MDA) content, reactive oxygen species (ROS) production, enzymatic antioxidants activities, reduced/oxidized glutathione ratio (GSH/GSSG) and reduced/oxidized ascorbic acid (ASA/DHA) ratio in seedlings. Application of ALA at lower dosages (0.1 and 1 mg l?1) improved shoot weight and chlorophyll contents, and decreased MDA in rape seedlings, whereas moderately higher dosage of ALA (10 mg l?1) hampered the growth. The study also indicated that 1 mg l?1 ALA improved chlorophyll content, but reduced MDA content and ROS production significantly under water‐deficit stress. Lower dosages of ALA (0.1 and 1 mg l?1) also enhanced GSH/GSSG and ASA/DHA as compared to the seedlings under water‐deficit stress. The antioxidant enzymes (ascorbate peroxidase, peroxidase, catalase, glutathione reductase and superoxide dismutase) enhanced their activities remarkably with 1 mg l?1 ALA treatment under water‐deficit stress. It was also revealed that 1 mg l?1 ALA treatment alone induced the expression of APX, CAT and GR substantially and under water‐deficit stress conditions ALA treatment could induce the expression of POD, CAT and GR to a certain degree. These results indicated that 0.1–1 mg l?1 ALA could enhance the water‐deficit stress tolerance of oilseed seedlings through improving the biomass accumulation, maintaining a relative high ratio of GSH/GSSG and ASA/DHA, enhancing the activities of the specific antioxidant enzymes and inducing the expression of the specific antioxidant enzyme genes.  相似文献   
10.
Sowing of chickpea in the heavy‐textured soils of north‐west Bangladesh with minimum tillage technology aims to increase the timely planting of large areas during a relatively short sowing window before soil water deficit limits germination and emergence. However, the seedbed conditions into which chickpea is sown need to be better quantified, so that limiting factors which affect germination and emergence can be identified. Two of the soil physical characteristics of importance are soil water and aeration. Growth cabinet studies have identified the fastest germination and emergence of chickpea on representative soils for this area at gravimetric water contents of 17–18 %, whilst soil water contents above and below this delayed germination and emergence. Emergence was recorded at soil water potentials between field capacity (?10 kPa) and wilting point (?1500 kPa). Emergence was possible at lower soil water potentials in the finer textured soil, whilst in coarser textured soil, emergence was still possible at higher soil water potentials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号