首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  1篇
综合类   1篇
  2013年   1篇
  2011年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Soils contain various kinds of crystalline to amorphous solid particles with at least one dimension in the nanoscale (<100nm). These nanoparticles contribute greatly to dynamic soil processes such as soil genesis, trace element cycling, contaminant transport, and chemical reaction. The nano-sized fraction of an Anthrosol was obtained to determine the occurrence, chemical composition, structure, and mineral phases of nanoparticles using high-resolution transmission electron microscopy (HRTEM) equipped with an energy-dispersive X-ray spectroscopy. Selected area electron diffraction or the fast Fourier transform of high-resolution images was used in structural characterization of the nanoparticles with HRTEM. Two nanoscale mineral types, i.e., mineral nanoparticles and nanominerals, were observed in the Anthrosol. Mineral nanoparticles in soil included well crystalline aluminumsilicate nanosheets, nanorods, and nanoparticles. Nanosheets with a length of 120-150 nm and a width of about 10-20 nm were identified as chlorite/vermiculite series. The presence of clear lattice fringe spacing in HRTEM image of nanoparticles indicated that mineral nanoparticles had a relatively good crystallinity. The nanomineral ferrihydrite also existed in the Anthrosol. The HRTEM images and the particle size distribution histogram suggested that these ferrihydrite nanoparticles were quite homogeneous, and had a narrow size distribution range (1-7 nm) with a mean diameter of 3.6±1.6 nm. Our HRTEM observation indicated that mineral nanoparticles and nanominerals were common and widely distributed in Anthrosols. HRTEM and selected area diffraction or lattice fringe spacing characterization provided further proofs to the structure of nanoparticles formed in soil.energy-dispersive X-ray spectroscopy (EDS), ferrihydrite, high-resolution transmission electron microscopy (HRTEM), nanominerals, nano-sized fraction  相似文献   
2.
【目的】了解银杏叶片光响应下的气孔运动规律及相关机理。【方法】运用电子显微镜和X-射线能谱分析技术对不同光照强度(0、200、400、600、800、1200、1500、2000、2500μmol·m-2·s-1)下银杏叶片气孔变化规律及机理进行研究,并进行相关性拟合分析。【结果】保卫细胞与副卫细胞中K元素浓度差与光照强度拟合方程为:y=0.296812076E-9x3-0.144161791E-5x2+0.171319903E-2x+1.33226634,R2=0.812892,呈极显著相关性,光照强度的极值点为784.036μmol·m-2·s-1;气孔开张度与光照强度关系拟合方程为:y=0.594592916E-9x3-0.307151239E-5x2+0.371863248E-2x+3.74379325,R2=0.915096,呈极显著相关性,光照强度的极值点为783.674μmol·m-2·s-1。通径分析结果表明,几种元素中K元素对气孔开张度的直接作用最大,S和Cl元素对气孔开张起负作用;保卫细胞中K、Ca、S、Mn、Fe、Cl、Cu元素高于副卫细胞,副卫细胞中O、Mg、P含量高于保卫细胞;电镜观测发现银杏叶片气孔外围副卫细胞有角质唇形物突起(乳突),气孔内陷,是抗旱能力较强的形态特征之一。【结论】银杏叶片气孔开张度及保卫细胞、副卫细胞中营养元素差异与光照强度相关,气孔及其外围副卫细胞结构与抗旱性相关。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号