首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
农作物   5篇
  2020年   3篇
  2017年   2篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
The impact of 48 h sprouted quinoa (SQ) was assessed in bread-making. Wheat flour (WF) was replaced with SQ at different levels (i.e., 10:90, 20:80 and 30:70, SQ:WF ratio). Once the optimal replacement level of SQ was identified, the bread-making performance of this ingredient was compared with those of pearled quinoa (PQ), commonly used in bread-making.Starch pasting properties and gluten aggregation behavior were not strongly affected at 20:80 level. Regardless the replacement level, SQ caused an increase in dough water absorption and in softening degree, and a decrease in stability, suggesting weakening of the gluten network. During leavening, SQ improved dough development and gas production, due to increased sugar content (i.e. maltose, sucrose and D-glucose). The best bread-making performance (highest bread specific volume and lowest crumb firmness) was obtained at 20:80 replacement level. Compared to PQ, SQ exhibited the best leavening capacity (high dough development, gas production and gas retention) and bread properties (high specific volume and low crumb firmness), likely due to its higher sugar content. Moreover, 20SQ bread was characterized by a decreased bitterness assessed by electronic-tongue. In conclusion, sprouting might be considered a valid alternative to pearling to improve the characteristics of quinoa enriched bread  相似文献   
2.
The GlutoPeak®-Test, a new rapid small-scale technique, was proposed as an alternative method for evaluation of wheat grain and tool for predicting the wheat flour quality. Samples obtained from an industrial mill were analyzed by a GlutoPeak test (whole grain flours) as well as by farinograph and extensograph tests (refined flours). Firstly, linear correlation coefficients between water absorption, dough stability, dough energy and defined parameters of GlutoPeak were calculated. Next, a sequential multiple quadratic regression analysis (backward, forward and stepwise), a logistic regression analysis and a PLSR analysis were applied. The correlation between the flour water absorption and most of the parameters obtained from the GlutoPeak test were strong (r ≥ 0.74, p < 0.001). For stability, the r value was 0.40, while for energy it was 0.44. Based on the obtained results it could be state that in the case of water absorption, the best fit was the sequential regression model, for dough stability sequential regression model and the PLSR model had the best fit, whereas logistic regression model was the best fitted to the energy. Unfortunately, after cross validation it was found that the last model is not good enough for energy prediction.  相似文献   
3.
In soft wheat breeding programs, the gluten strength of flours from specific genotypes is determined by various chemical and rheological tests. Based on such tests, the experimental wheat lines with very weak flour gluten are typically selected for the production of soft-dough biscuits, while the lines with medium gluten strength and extensibility are reserved for hard-dough biscuits. Often, the genotypes having high gluten strength are removed from such breeding programs. In the present study, the usability of the GlutoPeak tester on whole wheat flour samples was investigated for assessing the gluten strength of soft wheat breeding materials. In the study, 25 soft wheat genotypes, grown in seven locations for three years, were categorized by commonly used gluten-quality-related parameters. Based on the results of the study GlutoPeak whole wheat flour PMT values ranging from 30.0 to 50.0 s and AM values from 15.0 to 20.0 GPU were found to be suitable for soft-dough biscuit products, whereas the values between 40.0 and 60.0 s and 20.0 and 23.0 GPU were appropriate for hard-dough biscuit products. The genotypes exhibiting AM values > 24.0 GPU and PMT values > 60.0 s were judged to have too-strong gluten, and thus eliminated from the breeding program. The gluten aggregation energy (AGGEN), and the torque after the maximum torque (PM) values were only useful and applicable to flours for soft-dough products. The maximum torque (BEM) values were not effective in discriminating against the genotypes. The results of this study demonstrated that the GlutoPeak whole wheat PMT and AM parameters can be recommended as quick and accurate parameters especially for early generation screening with small-scale tests in soft wheat improvement programs.  相似文献   
4.
The GlutoPeak®-Test (GPT) as a rapid small-scale technique was optimized to evaluate the gluten aggregation properties and to predict the loaf volume, on the basis of a multiyear and multilocation analysis of wheat samples, using different solvents. 5 % lactic acid and 1 % sodium chloride displayed significant GPT responses. Relationships between protein content, sedimentation value, GPT parameters and loaf volume were investigated. With 1 % sodium chloride, the torque 15 s before maximum torque (AM) presented the highest correlation with loaf volume of samples from 2013 to 2014 (r = 0.77, r = 0.63, p < 0.001, respectively). A multiple regression analysis indicated that the best prediction of loaf volume was a linear function of protein content and AM, explaining the variation in loaf volume by 63 % and providing an uncertainty of ±39 ml. The accuracy of the validation of the linear function leads to 64 % correct and to 36 % incorrect predictions of the loaf volume. This emphasizes that the application of the linear function of protein content and AM cannot replace the actual measurement of loaf volume, but it could be a useful rapid screening test in breeding for improved baking quality in bread wheat.  相似文献   
5.
Selection for water absorption, a fundamental wheat quality parameter, has been a challenge in wheat breeding programs due to limited wheat materials available for milling and consequent time-consuming farinograph test. Hence, a high shear-based method, which requires 8 g of flour and less than 10 min per test, was proposed to predict flour water absorption using the Brabender GlutoPeak instrument. Highly significant positive linear relationship (r2 = 0.97) was found between GlutoPeak maximum torque and farinograph water absorption for 83 flour samples prepared with Bühler test mill from wheat lines under evaluation in the Canadian wheat variety registration trials. Similar strong correlation (r2 = 0.96) was obtained from flours (n = 63) prepared with Quadrumat Junior laboratory mill using small amount of wheat. Flour prepared either with Bühler test mill or Quadrumat Junior mill can be used for predicting water absorption effectively. GlutoPeak maximum torque was found to be independent of dough strength (r2 = 0.02) as measured by extensigraph. GlutoPeak test can be a powerful tool for rapid and reliable prediction of water absorption of wheat flour.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号