首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  国内免费   1篇
林业   1篇
  3篇
农作物   3篇
水产渔业   2篇
畜牧兽医   4篇
园艺   3篇
  2022年   1篇
  2019年   3篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2011年   2篇
  2009年   2篇
  2007年   1篇
  2005年   1篇
  2003年   2篇
  2000年   1篇
排序方式: 共有16条查询结果,搜索用时 62 毫秒
1.
肌肉糖原酵解是屠宰后肌肉向肉转变过程中的主要能量代谢途径,产生的乳酸和H+会降低肉的pH、改变蛋白质变性程度,与肉色、系水力、嫩度密切相关,对肉品质形成有重要作用。肌肉糖原酵解潜力可反映糖酵解的程度与速率,是肉品质评价的重要指标之一。本文综述了猪肌肉糖原酵解潜力的影响因素及其营养调控途径,为肉品质调控提供理论依据。  相似文献   
2.
Background: Glucocorticoids affect carbohydrate and lactate metabolism.
Hypothesis: Administration of prednisone to healthy dogs will result in clinically relevant hyperlactatemia.
Animals: Twelve healthy adult Beagle dogs.
Methods: Prospective, controlled experimental study. Twelve healthy adult Beagles were divided into 2 groups (3 of each sex per group). One group served as control. The other group received 2 treatments: low, 1 mg/kg prednisone PO q24h for 2 weeks; high, 4 mg/kg prednisone PO q24h for 2 weeks. A washout period of 6 weeks separated the treatments. Blood samples were drawn for whole blood lactate measurement on day (D) 0, D4, and D14 and measured in duplicate.
Results: Compared with the control group, low and high groups had significantly higher blood lactate concentrations at D4 and D14. There was no difference at D0. There was no effect of time within the control group. In the low and high groups, blood lactate concentration was increased at D4 and D14 versus D0. Blood lactate concentration was greater in the high group than the low group at D14 only.
Conclusions and Clinical Importance: Dogs treated with prednisone experience statistically significant increases in blood lactate concentrations, which can result in type B hyperlactatemia. In such cases, improving tissue perfusion, treatment for the commonest form of hyperlactatemia (type A) would be unnecessary.  相似文献   
3.
Most organic carbon (C) in soils eventually turns into CO2 after passing through microbial metabolic pathways, while providing cells with energy and biosynthetic precursors. Therefore, detailed insight into these metabolic processes may help elucidate mechanisms of soil C cycling processes. Here, we describe a modeling approach to quantify the C flux through metabolic pathways by adding 1-13C and 2,3-13C pyruvate and 1-13C and U-13C glucose as metabolic tracers to intact soil microbial communities. The model calculates, assuming steady-state conditions and glucose as the only substrate, the reaction rates through glycolysis, Krebs cycle, pentose phosphate pathway, anaplerotic activity through pyruvate carboxylase, and various biosynthesis reactions. The model assumes a known and constant microbial proportional precursor demand, estimated from literature data. The model is parameterized with experimentally determined ratios of 13CO2 production from pyruvate and glucose isotopologue pairs. Model sensitivity analysis shows that metabolic flux patterns are especially responsive to changes in experimentally determined 13CO2 ratios from pyruvate and glucose. Calculated fluxes are far less sensitive to assumptions concerning microbial chemical and community composition. The calculated metabolic flux pattern for a young volcanic soil indicates significant pentose phosphate pathway activity in excess of pentose precursor demand and significant anaplerotic activity. These C flux patterns can be used to calculate C use efficiency, energy production and consumption for growth and maintenance purposes, substrate consumption, nitrogen demand, oxygen consumption, and microbial C isotope composition. The metabolic labeling and modeling methods may improve our ability to study the biochemistry and ecophysiology of intact and undisturbed soil microbial communities.  相似文献   
4.
We used metabolic tracers and modeling to analyze the response of soil metabolism to a sudden change in temperature from 4 to 20 °C. We hypothesized that intact soil microbial communities would exhibit shifts in pentose phosphate pathway and glycolysis activity in the same way as is regularly observed for individual microorganisms in pure culture. We also hypothesized that increased maintenance respiration at higher temperature would result in greater energy production and reduced carbon use efficiency (CUE). Two hours after temperature increase, respiration increased almost 10-fold. Although all metabolic processes were increased, the relative activity of metabolic processes, biosynthesis, and energy production changed. Pentose phosphate pathway was reduced (17-20%), while activities of specific steps in glycolysis (51%) and Krebs cycle (7-13%) were increased. In contrast, only small but significant changes in biosynthesis (+2%), ATP production (−3%) and CUE (+2%) were observed. In a second experiment, we compared the metabolic responses to temperature increases in soils from high and low elevation. The shift in activity from pentose phosphate pathway to glycolysis with higher temperature was confirmed in both soils, but the responses of Krebs cycle, biosynthesis, ATP production, and CUE were site dependent. Our results indicate that 1) in response to temperature, communities behave biochemically similarly to single species and, 2) our understanding of temperature effects on CUE, energy production and use for maintenance and growth processes is still incomplete.  相似文献   
5.
Blackgram fiber (Phaseolus mungo): Mechanism of hypoglycemic action   总被引:2,自引:0,他引:2  
The effect of the administration of blackgram fiber (Phaseolusmungo) on the metabolism of carbohydrates was studied in rats fed 30%NDF (neutral detergent fiber) diet. The experimental group showed a significant increase in liverglycogen level and a significant decrease in blood glucose. Significantincreases in the activities of glycogen phosphorylase, hexokinase, fructose-1,6-diphosphatase, glucose-6-phosphate dehydrogenase and isocitratedehydrogenase were observed in the experimental group. The activities ofphosphoglucomutase and glucose-6-phosphatase were significantly lower inrats fed the fiber diet. The study showed that blackgram fiber exhibitssignificant hypoglycemic action in experimental animals.  相似文献   
6.
为了探究青海扁茎早熟禾(Poa pratensis var.anceps cv.Qinghai,PQ)糖酵解代谢与其耐寒性的关系,以对温度敏感的草地早熟禾‘巴润’(Poa pratensis ‘Baron’,PB)为对照,在人工气候培养箱中模拟低温(0℃)胁迫,并测定2种材料的细胞膜伤害情况及与糖酵解途径相关的指标。结果表明:低温胁迫下,PQ的细胞膜损伤程度显著低于PB,表现出较强的抗寒性;同时,低温胁迫可引起PQ中可溶性糖、蔗糖、果糖和丙酮酸含量的上升,且显著高于PB;低温胁迫下,PQ的己糖激酶(Hexokinase,HxK)、磷酸果糖激酶(Phosphofructokinase,PFK)和丙酮酸激酶(Pyruvatekinase,PK)活性均显著提高,其中HxK和PFK对低温反应更敏感;PQ中上述3种关键酶对应编码的PpHxKPpPFKPpPK基因的相对表达量在低温胁迫下也明显被诱导上调,且上调幅度均高于PB。以上结果表明,PQ在低温胁迫下可以有效调控糖酵解代谢,进而促进糖类及丙酮酸的积累与分解,以缓解低温胁迫对其造成的伤害。  相似文献   
7.
AIM To investigate the expression of pyruvate dehydrogenase kinase 4 (PDK4) in prostate cancer tissue and its effect on glycolysis and growth of prostate cancer cells. METHODS Immunohistochemistry was used to compare the expression differences of PDK4 protein in benign prostatic hyperplasia (BPH) and prostate cancer tissues. The expression levels of PDK4 in normal prostatic epithelial cells (RWPE-1) and different prostate cancer cell lines (PC3, LNCaP, DU145 and C4-2) were detected by RT-qPCR and Western blot. Recombinant plasmid carrying PDK4-shRNA was constructed, and the expression of PDK4 in prostate cancer PC3 cells was down-regulated by transfection with PDK4-shRNA. The changes in glycolysis level of PC3 cells before and after transfection were determined by cell glycolysis kit, and the effects of PDK4 on the viability and cell cycle distribution of PC3 cells were detected by CCK-8 assay and flow cytometry. RESULTS In prostate cancer tissues, the expression level of PDK4 protein was significantly higher than that in BPH tissues (P<0.05), and the analysis of immunohistochemical score showed that prostate cancer tissues with high Gleason score displayed significantly higher PDK4 expression than those with low Gleason score (P<0.05). Compared with normal prostatic epithelial cells, RT-qPCR and Western blot results indicated that the expression level of PDK4 was also significantly increased in prostate cancer cell lines (P<0.05). In addition, CCK-8 assay results showed that the viability of prostate cancer PC3 cells was significantly decreased after knockdown of PDK4 expression (P<0.05). The results of flow cytometry demonstrated that knockdown of PDK4 expression in PC3 cells resulted in a notable increase in G0/G1 phase arrest (P<0.05). CONCLUSION PDK4 is highly expressed in prostate cancer tissues and cell lines, and significantly increases in prostate cancer with high Gleason score. In addition, down-regulation of PDK4 expression significantly inhibits glycolysis and growth of prostate cancer cells, resulting in cell cycle arrest at G0/G1 phase.  相似文献   
8.
为揭示SA处理对低温胁迫下冬小麦糖酵解(glycolysis,EMP)代谢的影响,以强抗寒性冬小麦品种东农冬麦1号(Dn1)和弱抗寒性品种济麦22号(Jm22)为试验材料,在小麦幼苗三叶期喷施 1 mmol·L-1 SA,于大田连续10 d自然降温至5、0、-10、-25 ℃时取小麦幼苗叶片和分蘖节,测定其果糖含量、丙酮酸含量及EMP代谢重要酶(己糖激酶HxK、磷酸果糖激酶PFK和丙酮酸激酶PK)的活性和相关基因(TaHxKTaPFKTaPK)的表达量。结果表明,SA处理提高了两种冬小麦叶片和分蘖节中果糖及丙酮酸含量,但对Jm22影响较弱;SA处理提高了Dn1叶片和分蘖节中EMP途径关键酶(HxK、PFK和PK)的活性及其相应基因(TaHxKTaPFKTaPK)的表达量。SA处理可有效调控冬小麦EMP代谢,促进果糖与丙酮酸积累与分解,提高植物的抗寒性。  相似文献   
9.
Diethylene glycol and dibutyl tin dilaurate were used to degrade polyurethane fiber waste in this paper. The glycolysis products were separated into two phases including white solid and brown liquid by a freezing process. The chemical structure and thermal property of the purified solid product were characterized by Fourier transform infrared (FTIR) spectrometer,1H nuclear magnetic resonance (1H NMR) and differential scanning calorimetry (DSC). The solid product was mainly polytetrahydrofuran. The analysis of the liquid product was carried out by FTIR and high performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS). The liquid phase included various components such as aromatic amine, diethylene glycol-propylene diamine compound and so on. The glycolysis mechanism of polyurethane fiber waste is also discussed in this paper.  相似文献   
10.
We investigated the energy metabolism in roots of flooded Melaleuca cajuputi Powell, a tropical flood-tolerant tree species, by measuring adenylate concentrations and activities of glycolytic and fermentative enzymes under flooded conditions. Adenylate energy charge (AEC) decreased slightly to 0.72 on the second day of flooding and recovered to around 0.8 by the fourth day of flooding. Activities of pyruvate decarboxylase (EC 4.1.1.1) and alcohol dehydrogenase (EC 1.1.1.1) increased initially and then decreased to the control level after 14 days of flooding. On the other hand, activities of pyruvate kinase (EC 2.7.1.40), phosphoenolpyruvate phosphatase (EC 3.1.3.2), and a series of phosphoenolpyruvate carboxylase (EC 4.1.1.31), malate dehydrogenase (EC 1.1.1.37), and NADP dependent malic enzyme (EC 1.1.1.40), which can convert PEP into pyruvate, were not induced in flooded roots throughout the experiment. These results suggest that neither the downstream reactions of glycolysis nor ATP production via glycolysis was enhanced by flooding, whereas alcohol fermentation was enhanced. With the low ATP yield of the glycolysis–alcohol fermentation pathway and no induction of glycolytic enzymes, the glycolysis–alcohol fermentation pathway itself contributes little to ATP production in flooded roots of M. cajuputi. These physiological responses of M. cajuputi to flooding may have the advantages of surviving flooded conditions because they can avoid exhaustion of sugar and accumulation of ethanol, a toxic end product of alcohol fermentation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号