首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
水产渔业   3篇
  2013年   1篇
  2012年   1篇
  2001年   1篇
排序方式: 共有3条查询结果,搜索用时 62 毫秒
1
1.
Knowledge of the movement patterns of threatened fishes aids their conservation management and informs sustainable development of natural resources including freshwater. Prior to the expansion of a temperate upland reservoir in Australia, we used radio telemetry to compare seasonal differences in the diel movements of adult endangered Macquarie perch (Macquaria australasica) (235–414 mm total length) in Cotter Reservoir, Australian Capital Territory. Macquarie perch exhibited a diel range of 389 ± 46 m, a diel mobility of 769 ± 93 m and diel area use of 24008 ± 5595 m2 among four seasons. Diel range was significantly higher in winter compared with other seasons, and diel mobility was negatively correlated with fish size among four seasons. Macquarie perch inhabited deeper water in summer across the diel cycle (7.2 ± 0.5 m) in comparison with other seasons (spring: 3.8 ± 0.3 m, autumn: 3.0 ± 0.2 m, winter: 3.0 ± 0.3 m). Within seasons, both remote and manual telemetry identified that diel activity was predominantly crepuscular. Prey availability and the threat of avian predation represent the most likely explanations for the differences in seasonal movements. In a reservoir where expansion will likely result in a loss of critical habitat (emergent macrophytes) for this endangered species, we use site‐specific knowledge of the spatial ecology of Macquarie perch to inform the placement of shelter habitat prior to filling the enlarged reservoir.  相似文献   
2.
The changes in proximate composition, amino acid (total and free) and fatty acid content of artificially propagated trout cod, Maccullochella macquariensis larvae from five mothers hatched, weaned and reared separately, each in two groups, one fed with Artemia naupli and the other starved, for 15 days (after yolk resorption), are presented. There was no significant change in the proximate composition of fed larvae with devlopment, but in starved larvae the protein (linearly) and lipid (curvi-linearly) content decreased significantly as starvation progressed. The essential amino acids (EAA) and non- essential amino acids (NEAA) found in highest amounts in trout cod larvae were lysine, leucine, threonine and arginine, and alanine, serine and glutamic acid, respectively. In fed larvae the total amino acid (TAA), TEAA and TNEAA content did not vary significantly as development progressed. In starved larvae the TAA, EAA and NEAA content, as well as all the individual amino acids decreased significantly (P<0.05) from the levels in day of hatch and/or yolk-sac resorbed larvae. The greatest decrease occurred in the TEAA content (7.38±0.76 at day of hatch to 1.96±0.09 15 day starved in moles larva–1; approximately a 74% decrease), whereas the decrease in TNEAA was about 38%. Unlike in the case of TAA distinct changes in the free amino acid (FAA) pool were discernible, from day of hatch and onwards, in both fed and starved trout cod larvae. In both groups of larvae the most noticeable being the decrease of % FEAA in TFAA, but not the % FAA in TAA. Four fatty acids together, accounted for more than 50% of the total in each of the major fatty acid categories in all larvae sampled; 16: 0, 18:1n-9, 22: 6n-3 and 20: 4n-6, amongst saturates, monoenes, n-3 PUFA and n-6 PUFA, respectively. Twelve fatty acids either decreased (14: 0, 16: 1n-7, 20: 1n-9, 20: 4n-6, 20: 5n-3, 22: 5n-3 and 22: 6n-3) or increased (18: 2n-6, 18: 3n-3, 18: 3n-6, 18: 4n-3 and 20: 3n-3) in quantity, after 15 days of feeding, from the base level in day of hatch and/ or yolk- sac resorbed larvae. The greatest increase occurred in 18: 3n-3 from 6.4±0.1 to 106.2±13.1 g mg lipid–1 larva–1, and the greatest decrease occurred in 22: 6n-3 (181.2±12.4 to 81.4±6.2 g mg lipid–1 larva–1). In starved larvae, at the end of 15 days, all the fatty acids, except 18: 0, 20: 3n-3 and 20: 4n-6, decreased significantly (P<0.05) from the levels in day of hatch and/or yolk- sac resorbed larvae.  相似文献   
3.
Abstract – Understanding movement patterns and habitat utilisation is critical for the management of diadromous fishes. An acoustic telemetry array was used to monitor 33 estuary perch, Macquaria colonorum and 39 Australian bass, Macquaria novemaculeata in the freshwater and estuarine reaches on the Shoalhaven River, south‐east Australia. On average, tagged M. novemaculeata were detected for a considerably shorter period than M. colonorum, and evidence suggested that fishing pressure may have impacted on their survival. Macquaria colonorum displayed significant shifts in seasonal and size‐related habitat use, with fish predominantly residing in deep (>5 m) areas within the middle (mesohaline) reaches of the estuary during the austral spring to autumn months. In winter, M. colonorum individuals made frequent downstream migrations, often to localised areas, within the lower estuary (LE). In contrast, M. novemaculeata were distributed in shallow (<2 m) habitats throughout the year, within the upper (oligohaline) estuarine reaches of the river, as well as in fresh water. Like M. colonorum, M. novemaculeata made extensive downstream and upstream movements, often coincident with reproductive behaviour, water temperature and increased freshwater inflows. It is postulated that the high site fidelity and repetitive homing displayed by both species is influenced by ontogenetic behaviour and prey availability. Furthermore, the extent of instream distribution by both species, and the lack of observed annual spawning migrations by some M. novemaculeata individuals, indicates the once considered ‘catadromous’ life cycle of these fishes may not be obligatory. A management approach is recommended to ensure that both these species are not over‐exploited within a portion of their instream range, thus maintaining their full reproductive potential.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号