首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   199篇
  免费   70篇
  国内免费   1篇
林业   5篇
  31篇
综合类   8篇
农作物   15篇
水产渔业   194篇
畜牧兽医   7篇
园艺   3篇
植物保护   7篇
  2024年   2篇
  2022年   3篇
  2021年   24篇
  2020年   12篇
  2019年   24篇
  2018年   17篇
  2017年   19篇
  2016年   16篇
  2015年   14篇
  2014年   15篇
  2013年   24篇
  2012年   23篇
  2011年   8篇
  2010年   13篇
  2009年   6篇
  2008年   10篇
  2007年   3篇
  2006年   4篇
  2005年   7篇
  2004年   4篇
  2003年   3篇
  2002年   2篇
  2001年   3篇
  2000年   4篇
  1999年   3篇
  1998年   3篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
排序方式: 共有270条查询结果,搜索用时 15 毫秒
1.
Optimised pre-analytical methods for measuring the chemical properties of soil macro-organisms are needed. We tested the effects of ethanol immersion, freezer storage, and drying method on the reliability of estimates of key stoichiometric elements (carbon [C], nitrogen [N], phosphorus [P]) and abundances of 13C and 15N in samples of crickets (Acheta domestica), cockroaches (Nauphoeta cinerea) and mealworms (larval Tenebrio molitor). Ethanol immersion tended to increase A. domestica C and N, and reduced A. domestica P, relative to the reference treatment (deep freezing and oven drying). For N and P these effects were only present after 28-day ethanol immersion. Nauphoeta cinerea and T. molitor samples were generally unaffected by storage treatments, while δ13C and δ15N were not affected by any storage treatment for any species. Thus, five days of ethanol immersion may be acceptable prior to elemental and stoichiometric analyses of hard-bodied soil invertebrates in comparative studies.  相似文献   
2.
As a function of the water quality provided by square, circular and oval experimental ponds, the growth, survival and oxygen requirements in epibenthic postlarvae of Farfantepenaeus aztecus were analysed in relation to their routine metabolism and apparent heat increment. Temperature, oxygen concentration, pH and salinity were measured daily in two experimental ponds of each shape. The postlarvae oxygen consumption during two 24‐h cycles, their growth, physiological condition and survival and the productivity in the ponds were estimated. Low values of pH, oxygen concentration and phytobenthos productivity, and reduced postlarvae relative growth and survival were observed in the square ponds. We suggest that the latter results from a deficient water circulation related to the effect of the pond's shape on dissolved oxygen levels and, consequently, on growth and survival. The postlarvae routine metabolism, including feeding, varied between 1.91 and 2.25 mg O2 h?1 g?1 wet weight, whereas the minimum oxygen concentration needed in the ponds is approximately 4.25 mg O2 L?1. These conditions were achieved in the oval ponds concurrent with higher survival and growth values, in which individuals distributed randomly, for which we suggest that oval‐shaped ponds could be the most adequate for the culture of this and other penaeid species.  相似文献   
3.
Abyssal seafloor ecosystems cover more than 50% of the Earth’s surface. Being formed by mainly heterotrophic organisms, they depend on the flux of particulate organic matter (POM) photosynthetically produced in the surface layer of the ocean. As dead phytoplankton sinks from the euphotic to the abyssal zone, the trophic value of POM and the concentration of essential polyunsaturated fatty acids (PUFA) decrease. This results in pronounced food periodicity and limitations for bottom dwellers. Deep-sea invertebrate seston eaters and surface deposit feeders consume the sinking POM. Other invertebrates utilize different food items that have undergone a trophic upgrade, with PUFA synthesized from saturated and monounsaturated FA. Foraminifera and nematodes can synthesize arachidonic acid (AA), eicosapentaenoic acid (EPA), while some barophylic bacteria produce EPA and/or docosahexaenoic acid. FA analysis of deep-sea invertebrates has shown high levels of PUFA including, in particular, arachidonic acid, bacterial FA, and a vast number of new and uncommon fatty acids such as 21:4(n-7), 22:4(n-8), 23:4(n-9), and 22:5(n-5) characteristic of foraminifera. We suppose that bacteria growing on detritus having a low trophic value provide the first trophic upgrading of organic matter for foraminifera and nematodes. In turn, these metazoans perform the second-stage upgrading for megafauna invertebrates. Deep-sea megafauna, including major members of Echinodermata, Mollusca, and Polychaeta display FA markers characteristic of bacteria, foraminifera, and nematodes and reveal new markers in the food chain.  相似文献   
4.
5.
Non-commercial invertebrate discards in an experimental trammel net fishery   总被引:1,自引:0,他引:1  
Abstract  Non-commercial invertebrate discards in an experimental trammel net fishery were studied in relation to selectivity of the gear, depth, soak time and season. Forty experimental fishing trials were carried out over a 1-year period with six combinations of small mesh (100, 120 and 140 mm) inner and large mesh (600 and 800 mm) outer panels. On average, 43.8 ± 12.2 (SD) (individuals 1000 m−1 of net) of non-commercial invertebrates were discarded, accounting for 48% and 65% of the total catch and total discards by numbers, respectively. Within non-commercial invertebrates discards, the six most abundant species by number were Phallusia mammillata (Cuvier) (27.5%), Cymbium olla (L.) (13.0%), Sphaerechinus granularis (Lamarck) (11.3%), Paracentrotus lividus (Lamarck) (10.9%), Astropartus mediterraneus (Risso) (8.2%) and Astropecten aranciacus (L.) (8.1%); Echinoderms (43.1%) particularly important. The highest and lowest discard ratios were found in autumn and winter, respectively. Discards generally decreased with depth, varied considerably in relation to soak time and were not related to mesh size combinations. Trammel nets seem to be the most important gear in terms of ecological impacts on benthic invertebrates compared with other coastal fishing gears and at the depths studied (15–60 m).  相似文献   
6.
7.
8.
9.
10.
As a discipline, comparative immunology enhances zoology and has gained wide acceptance in the biological sciences. It is an offshoot of the parent field, immunology, and is an amalgam of immunology and zoology. All animals from protozoans to humans have solved the threat of extinction by having evolved an immune‐defense strategy that ensures the capacity to react against foreign, non‐self microorganisms and cancers that disturb the homeostatic self. Invertebrate‐type innate immune responses evolved first and they characterize the metazoans. These rapid natural responses act immediately and are often essential for the occurrence of slower, more specific, adaptive vertebrate‐type immune responses. As components of the innate immune system, there is an emphasis on several major steps in the evolutionary process: (i) recognition; (ii) the phagocytic cell; and (iii) the natural killer cell. When vertebrates evolved, beginning with fish, thymus‐controlled T cells first appeared, as did bone marrow‐derived B cells (first found in amphibians with long bones). These were the precursors of the plasma cells that synthesize and secrete antibodies. Confirming the concept of self/non‐self, invertebrates possess natural, non‐adaptive, innate, non‐clonal, non‐anticipatory immune responses, whereas vertebrates possess adaptive, acquired, clonal, and anticipatory responses. This symposium concerns: (i) aspects of the immune spectrum in representative groups; (ii) specific findings (in particular models; e.g. earthworms); (iii) clues as to the possible biomedical application of relevant molecules derived from animals, notably invertebrates; and (iv) some views on the more practical applications of understanding immune systems of invertebrates and ectotherms, and their possible role in survival.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号