首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   9篇
畜牧兽医   44篇
  2023年   6篇
  2021年   1篇
  2020年   7篇
  2019年   1篇
  2018年   1篇
  2017年   5篇
  2015年   3篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2005年   1篇
  2001年   1篇
  2000年   1篇
  1998年   3篇
  1996年   1篇
排序方式: 共有44条查询结果,搜索用时 15 毫秒
1.
Improvements in human patient monitoring despite their development in animals, do not always find their way into veterinary clinical use due to financial constraints. Gastrointestinal intraluminal CO2 partial pressure (Gip1CO2) monitoring, however, is not only proving very beneficial in human trauma and critical patient care but is also very likely to become relatively inexpensive. By providing information on the perfusion adequacy of a high risk, critically important tissue, the GI mucosa, GI P1CO2 monitoring offers an easily accesible indicator of the efficacy and adequacy of resuscitative interventions. The potential for decreasing morbidity and mortality is enormous. Therefore, the practicing veterinarian should become familiar with GI P1CO2 monitoring theory and technology so he or she can be better prepared to incorporate it into practice when in becomes available.  相似文献   
2.
OBJECTIVE: To examine the feasibility and accuracy of a handheld rebound tonometer, TonoVet, and to compare the intraocular pressure (IOP) readings of the TonoVet with those of an applanation tonometer, TonoPen XL, in normal Eurasian Eagle owls. ANIMALS STUDIED: Ten clinically normal Eurasian Eagle owls (20 eyes). PROCEDURES: Complete ocular examinations, using slit-lamp biomicroscopy and indirect ophthalmoscopy, were conducted on each raptor. The IOP was measured bilaterally using a rebound tonometer followed by a topical anesthetic agent after 1 min. The TonoPen XL tonometer was applied in both eyes 30 s following topical anesthesia. RESULTS: The mean +/- SD IOP obtained by rebound tonometer was 10.45 +/- 1.64 mmHg (range 7-14 mmHg), and by applanation tonometer was 9.35 +/- 1.81 mmHg (range 6-12 mmHg). There was a significant difference (P = 0.001) in the IOP obtained from both tonometers. The linear regression equation describing the relationship between both devices was y = 0.669x + 4.194 (x = TonoPen XL and y = TonoVet). The determination coefficient (r(2)) was r(2) = 0.550. CONCLUSIONS: The results suggest that readings from the rebound tonometer significantly overestimated those from the applanation tonometer and that the rebound tonometer was tolerated well because of the rapid and minimal stress-inducing method of tonometry in the Eurasian Eagle owls, even without topical anesthesia. Further studies comparing TonoVet with manometric measurements may be necessary to employ rebound tonometer for routine clinical use in Eurasian Eagle owls.  相似文献   
3.
Distribution of intraocular pressure in dogs   总被引:2,自引:0,他引:2  
Intraocular pressure (IOP) was measured by four different applanation tonometers in normal dogs. By MacKay-Marg tonometry in 391 dogs (772 eyes) the mean ± SD IOP was 18.8 ± 5.5 mmHg (range 8–52 mmHg). Using Tono-Pen XL tonometry in 421 dogs (823 eyes) the mean IOP was 19.2 ± 5.9 mmHg, and the range was 4.42 mmHg. With MMAC-II tonometry in 80 dogs (158 eyes), the mean IOP was 15.7 ± 2.8 mmHg with a range of 10–30 mmHg. By pneumatonograph tonometry in 135 dogs (255 eyes), the mean IOP was 22.9 ± 6.1 mmHg and the range was 10–47 mmHg. In this study 53 breeds were represented. Of those breeds with six animals or more, no significant differences were detected in IOP between breeds ( P > 0.353) or sex ( P > 0.270). There was a significant decline of 2–4 mmHg ( P > 0.0001) in IOP as age increased from less than 2 years to greater than 6 years of age. This trend was present with all of the four tonometers. There were no significant differences between the MacKay-Marg and TonoPen-XL tonometers ( P > 0.198), but significant differences with the MMAC-II ( P > 0.001) and pneumatonograph ( P > 0.001) tonometers existed compared to the first two instruments. Based on this study and the literature, the mean IOP for the normal dog is 19.0 mmHg with a range of 11 (5%) and 29 (95%) mmHg.  相似文献   
4.
Intraocular pressure (IOP) was measured in normal dairy cows by applanation tonometry. In the first study of 15 Holstein and 17 Jersey cows the mean IOP by Mackay-Marg tonometry was 27.5 ± 4.8 mmHg (range 16–39 mmHg); no significant differences ( P < 0.92) were observed between the Holstein and Jersey breeds. In the second study of 15 Holstein and 12 Jersey cows, the mean IOPs by Mackay-Marg and TonoPen-XL tonometry were 28.2 ± 4.6 mmHg (range 19–39 mmHg) and 26.9 ± 6.7 mmHg (range 16–42 mmHg), respectively. Comparisons of the Mackay-Marg and TonoPen tonometers indicated no significant differences ( P < 0.16). The mean and range of IOP in normal dairy cows within 2 SD (95% of the population) is 27 mmHg with a range of 16–36 mmHg.  相似文献   
5.
Tonometry was performed to estimate intraocular pressure (IOP) in 12 Nubian ibexes ( Capra ibex nubiana ), 10 Grant zebras ( Equus burchelli  ) and five Arabian oryxes ( Oryx leucoryx ), using both applanation (Tono-Pen) and/or indentation (Schiotz) tonometers. Animals were anesthetized with a mixture of etorphine hydrochloride and acepromazine maleate. Mean (± SD) IOP in the ibex was 17.95 ± 4.78 mmHg (24 eyes, indentation tonometry). In the zebra, indentation tonometry (20 eyes) yielded a mean IOP of 25.30 ± 3.06 mmHg, and applanation tonometry (six eyes) yielded a mean IOP of 29.47 ± 3.43 mmHg. In the oryx, indentation tonometry (five eyes) yielded a mean IOP of 22.68 ± 8.15 mmHg, and applanation tonometry (10 eyes) yielded a mean IOP of 11.76 ± 3.43 mmHg. There were no significant effects of gender, age, weight, side or reading number on the IOP measured in any of the three species. No significant differences were found between the IOP of the three species, nor between the readings of the two instruments, although some of the P -values were close to the significance level.  相似文献   
6.
7.
Objective: To describe a protocol for the examination of free‐living raptors and report the ophthalmic examination findings of seven raptor species native to central Illinois, namely the barred owl, Cooper’s hawk, eastern screech owl, great horned owl, American kestrel, red‐tailed hawk, and turkey vulture and to determine if the findings relative to visual prognosis affected eligibility for future release. Animals studied: Seventy‐nine free‐living raptors. Procedures: Under manual restraint, complete ophthalmic examination including slit‐lamp biomicroscopy and indirect funduscopy, applanation tonometry, rebound tonometry, ocular morphometrics, B‐mode ultrasound, and electroretinography (ERG) were performed on each bird. Histopathology of enucleated globes was performed after euthanasia or death in selected cases. Results: The examination protocol was easily performed using manual restraint alone on all birds. Ocular lesions were detected in 48.1% of birds, with 47.3% affected unilaterally and 52.6% affected bilaterally. Ocular lesions were considered to be vision threatening in 29.0% of the unilaterally affected birds and 29.0% of the bilaterally affected birds. The most common case outcomes were discharge from hospital to rehabilitation facility (45.6%) followed by euthanasia (43.0%). The presence of an ocular lesion or a vision‐threatening ocular lesion was not significantly associated with outcome. Reference ranges are reported for B‐mode ultrasound, ocular morphometrics, and horizontal corneal diameter in all species. Conclusion: Complete ophthalmic examination can be supplemented by the use of ocular morphometrics, ultrasound, and ERG in the manually restrained raptor. These advanced diagnostic techniques may be useful in developing more objective criteria for evaluating eligibility for release following rehabilitation of free‐living birds of prey.  相似文献   
8.
9.
10.

Objectives

To determine the accuracy, precision, and clinical applicability of the ICare® TONOVET Plus (TVP) in cats.

Animals and Procedures

IOP readings obtained with the TVP were compared to values obtained concurrently with the original TONOVET (TV01) and Tono-Pen Vet™ (TP) in 12 normal cats (24 eyes) and 8 glaucomatous LTBP2-mutant cats (13 eyes) in vivo. Reproducibility of TVP readings was also assessed for three observers in the above cats. The anterior chambers of five different normal cat eyes were cannulated ex vivo. IOP was measured with the TVP, TV01, and TP at manometric IOPs ranging from 5 to 70 mmHg. Data were analyzed by linear regression, ANOVA and Bland–Altman plots. ANOVA was used to assess reproducibility of TVP readings obtained by different observers and an ANCOVA model controlled for variation of individual cats. p < .05 was considered significant.

Results

TVP values strongly correlated with TV01 values (y = 1.045x + 1.443, R2 = .9667). The TP significantly underestimated IOP relative to the TVP and TV01, particularly at high IOP. IOP values obtained by 1 observer were significantly higher (~1 mmHg average) compared to the other 2 observers via ANCOVA analysis (p = .0006479 and p = .0203). Relative to manometry, the TVP and TV01 were significantly more accurate (p < .0001) and precise (p < .0070) than the TP in ex vivo eyes.

Conclusions

IOP readings obtained with the TVP and TV01 are broadly interchangeable between models and between observers, but subtle differences may be important in a research context. TP readings vastly underestimate high IOP in feline glaucoma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号