首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   10篇
综合类   4篇
农作物   2篇
畜牧兽医   46篇
园艺   1篇
  2023年   2篇
  2022年   3篇
  2021年   2篇
  2020年   3篇
  2018年   2篇
  2017年   3篇
  2016年   5篇
  2015年   2篇
  2014年   3篇
  2013年   3篇
  2012年   2篇
  2011年   2篇
  2010年   6篇
  2009年   1篇
  2008年   4篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2000年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
排序方式: 共有53条查询结果,搜索用时 15 毫秒
1.
Ten, anesthetized dogs were instrumented with three pulse oximeter probes; two lingual transmittance probes and one rectal reflective probe. Arterial oxygen desaturation was produced by decreasing the inspired oxygen concentration. Hypotension was produced with an infusion of nitroprusside. Simultaneous pulse oximeter readings (SpO2) were compared to co-oximeter measured arterial saturation (SaO2) collected over a range of SaO2 (50–100%) and mean arterial pressures (40–100mmHg). Each of the monitors and means of evaluating SpO2 studied provided accurate SpO2 measurements over a range of mean arterial pressure from 40–100mmHg. All of the monitors tested tended to overestimate the SaO2 when the arterial saturation was less than 70%.  相似文献   
2.
3.
4.
ObjectiveTo determine the dose of phenylephrine, norepinephrine and dopamine necessary to maintain mean arterial pressure (MAP) within 70–80 mmHg during administration of isoflurane, isoflurane and vatinoxan and isoflurane, vatinoxan and dexmedetomidine at three plasma concentrations.Study designRandomized crossover experimental study.AnimalsA group of five adult healthy neutered male cats.MethodsInstrumentation occurred during anesthesia with isoflurane in oxygen. Isoflurane end-tidal concentration was set to 1.25 × minimum alveolar concentration (MAC). Phenylephrine, norepinephrine or dopamine was administered to maintain MAP 70–80 mmHg. A target-controlled infusion system was used to administer vatinoxan at a target plasma concentration of 1 μg mL–1 and three dexmedetomidine concentrations (5, 10 and 20 ng mL–1). Isoflurane concentration was altered to maintain an equivalent 1.25 MAC. Heart rate, arterial blood pressure, central venous pressure, pulmonary artery pressure, pulmonary artery occlusion pressure, body temperature, arterial and mixed venous blood gas, cardiac output and drug concentrations were measured at baseline (isoflurane alone), during vatinoxan administration, and during administration of vatinoxan and dexmedetomidine at the three target concentrations.ResultsMAP < 70 mmHg was observed with vatinoxan alone and in the dopamine treatment with dexmedetomidine concentrations ≤ 10 ng mL–1. Norepinephrine and phenylephrine maintained MAP 70–80 mmHg during vatinoxan and dexmedetomidine ≤ 10 ng mL–1. As the target dexmedetomidine concentration increased, the dose of norepinephrine and phenylephrine needed to maintain MAP 70–80 mmHg decreased; no treatment was necessary to maintain MAP > 70 mmHg at the 20 ng mL–1 target dexmedetomidine concentration in most cats.Conclusions and clinical relevanceNorepinephrine and phenylephrine, but not dopamine, are effective to prevent hypotension in isoflurane-anesthetized cats administered dexmedetomidine and vatinoxan.  相似文献   
5.

Objective

To investigate whether pulse pressure variation (PPV) can predict fluid responsiveness in healthy dogs during clinical surgery.

Study design

Prospective clinical study.

Animals

Thirty-three isoflurane-anesthetized dogs with arterial hypotension during orthopedic surgery.

Methods

Fluid challenge with lactated Ringer's solution (15 mL kg?1 in 15 minutes) was administered in mechanically ventilated dogs (tidal volume 10 mL kg?1) with hypotension [mean arterial pressure (MAP) < 65 mmHg]. The volume expansion was considered effective if cardiac output (CO; transesophageal Doppler) increased by ≥ 15%. Cardiopulmonary data were analyzed using two-way ANOVA, receiver operating characteristics (ROC) curves and Spearman coefficient; p < 0.05 was considered significant.

Results

Effective volume expansion, mean ± standard deviation 42 ± 4% increase in CO (p < 0.0001) was observed in 76% of the dogs, resulting in a decrease in PPV (p < 0.0001) and increase in MAP (p < 0.0001), central venous pressure (CVP; p = 0.02) and ejection fraction (p < 0.0001) compared with before the fluid challenge. None of these changes occurred when volume expansion resulted in a nonsignificant CO increase of 4 ± 5%. No significant differences were observed in blood gas analysis between responsive and nonresponsive dogs. The increase in CO was correlated with the decrease in PPV (r = ?0.65; p < 0.0001) but absolute values of CO and PPV were not correlated. The PPV performance (ROC curve area: 0.89 ± 0.06, p = 0.0011) was better than that of CVP (ROC curve area: 0.54 ± 0.12) and MAP (ROC curve area: 0.59 ± 0.13) to predict fluid responsiveness. The best cut-off for PPV to distinguish responders and nonresponders was 15% (50% sensitivity and 96% specificity).

Conclusions and clinical relevance

In mechanically ventilated, healthy, isoflurane-anesthetized dogs, PPV predicted fluid responsiveness to volume expansion, and MAP and CVP did not show such applicability.  相似文献   
6.
Objective To compare the incidence of anesthetic complications in diabetic and nondiabetic dogs undergoing general anesthesia and phacoemulsification cataract surgery. Procedure The medical and anesthetic records of all dogs undergoing phacoemulsification cataract surgery at Davies Veterinary Specialists between 2005 and 2008 were reviewed. Anesthetic records were evaluated by an ECVAA Diplomate. Dogs for which records were incomplete were excluded. The anesthetic technique, including all drugs administered in the perioperative period, was recorded. The anesthetic complications investigated included hypotension (MAP (mmHg): ≥55 none/mild; ≤54 moderate/severe), bradycardia (<60 bpm associated with hypotension) and hypothermia (esophageal temperature <36.7 °C). Where hypotension was present, the method of and response to treatment was recorded. The incidence of severe hyperglycemia (blood glucose >13.75 mmol/L (250 mg/dL)) in the diabetic group was also assessed. Results 66 diabetic and 64 nondiabetic dogs were included in the study. Diabetic dogs were more likely to develop moderate and severe intraoperative hypotension than nondiabetic dogs. Forty‐four percent of diabetic dogs had at least one episode of severe hyperglycemia whilst anesthetized. Conclusions Diabetic dogs undergoing phacoemulsification are more likely to suffer the anesthetic complications of moderate and severe hypotension than nondiabetic dogs. The increased incidence and severity of hypotension in diabetic dogs may be explained by hypovolemia secondary to hyperglycemia and resultant osmotic diuresis.  相似文献   
7.
Seven critically ill foals that continued to be hypotensive despite fluid resuscitation and the infusion of dobutamine and/or dopamine were treated with an infusion of norepinephrine (noradrenaline). The norepinephrine was administered concurrently with dobutamine, and the combination therapy was titrated by use of indirect mean arterial pressure measurements. The highest dose of norepinephrine used was 1.5 mcg/kg/min. In six foals the administration of norepinephrine was associated with an increase in blood pressure. In one foal the mean arterial pressure did not increase in response to the doses of norepinephrine administered. All of the foals experienced an increase in urine output coincident with the start of the norepinephrine infusion. Three of the foal survived to hospital discharge.  相似文献   
8.
ObjectiveTo investigate the relationship between urine specific gravity (USG) and the risk of arterial hypotension during general anaesthesia (GA) in healthy dogs premedicated with dexmedetomidine and methadone.Study designProspective clinical cohort study.AnimalsA total of 75 healthy client-owned dogs undergoing GA for elective tibial plateau levelling osteotomy.MethodsAfter placing an intravenous catheter, dogs were premedicated with dexmedetomidine (5 μg kg–1) and methadone (0.3 mg kg–1) intravenously. After induction of GA with alfaxalone to effect, the bladder was expressed and USG measured. An arterial catheter was placed, and residual blood was used to measure packed cell volume (PCV) and total protein (TP). GA was maintained with isoflurane vaporised in oxygen and a femoral and sciatic nerve block were performed. Arterial blood pressure < 60 mmHg was defined as hypotension and recorded by the anaesthetist. Treatment for hypotension was performed in a stepwise manner following a flow chart. Frequency of hypotension, treatment and response to treatment were recorded. Logistic regression modelling was used to assess the association between USG, TP and PCV and incidence of perioperative hypotension; p < 0.05.ResultsData from 14 dogs were excluded. Of the 61 dogs, 16 (26%) were hypotensive during GA, 15 dogs needed treatment of which 12 were responsive to a decrease in inhalant vaporiser setting. The logistic regression model was not statistically significant (p = 0.8). There was no significant association between USG (p = 0.6), TP (p = 0.4), PCV (p = 0.8) and arterial hypotension during GA.Conclusions and clinical relevanceIn healthy dogs premedicated with dexmedetomidine and methadone and maintained under GA with isoflurane and a femoral and sciatic nerve block, there was no relationship between the specific gravity of urine collected after premedication and intraoperative arterial hypotension.  相似文献   
9.
This study aimed to investigate the cardiovascular effects elicited by Dictyota pulchella, a brown alga, using in vivo and in vitro approaches. In normotensive conscious rats, CH(2)Cl(2)/MeOH Extract (CME, 5, 10, 20 and 40 mg/kg) from Dictyota pulchella produced dose-dependent hypotension (-4 ± 1; -8 ± 2; -53 ± 8 and -63 ± 3 mmHg) and bradycardia (-8 ± 6; -17 ± 11; -257 ± 36 and -285 ± 27 b.p.m.). In addition, CME and Hexane/EtOAc Phase (HEP) (0.01-300 μg/mL) from Dictyota pulchella induced a concentration-dependent relaxation in phenylephrine (Phe, 1 μM)-pre-contracted mesenteric artery rings. The vasorelaxant effect was not modified by the removal of the vascular endothelium or pre-incubation with KCl (20 mM), tetraethylammonium (TEA, 3 mM) or tromboxane A(2) agonist U-46619 (100 nM). Furthermore, CME and HEP reversed CaCl(2)-induced vascular contractions. These results suggest that both CME and HEP act on the voltage-operated calcium channel in order to produce vasorelaxation. In addition, CME induced vasodilatation after the vessels have been pre-contracted with L-type Ca(2+) channel agonist (Bay K 8644, 200 nM). Taken together, our data show that CME induces hypotension and bradycardia in vivo and that both CME and HEP induce endothelium-independent vasodilatation in vitro that seems to involve the inhibition of the Ca(2+) influx through blockade of voltage-operated calcium channels.  相似文献   
10.
OBJECTIVE: To evaluate the effects of meloxicam on renal function in dogs anaesthetized and rendered hypotensive with acepromazine-thiopental-isoflurane. ANIMALS: Eight healthy beagles, four males and four females, 25.6 +/- 19.3 months old and weighing 12.8 +/- 2.0 kg. MATERIALS AND METHODS: Either meloxicam suspension at a dose of 0.133 mL kg(-1) (0.2 mg kg(-1)) or 0.133 mL kg(-1) saline solution (control), were given by mouth (PO) in a randomized, cross-over fashion. The treatment or control was given 3 hours before anaesthesia. Dogs were sedated with intramuscular acepromazine 0.1 mg kg(-1). Anaesthesia was induced with intravenous thiopental, followed by tracheal intubation and maintenance with isoflurane in oxygen and air, delivered using a semi-closed breathing system. Renal function was quantified using serum biochemistry, urinalysis and glomerular filtration rate measured by scintigraphy. Analysis of variance or Friedman anova were used for statistical analysis. RESULTS: Values (mean +/- SD) for mean arterial blood pressure did not differ significantly between treatments but was low (54 +/- 7 mmHg) during anaesthesia. Glomerular filtration rate did not differ significantly between treatments or over time, and results of urine and serum analysis were within reference ranges after meloxicam treatment. CONCLUSIONS AND CLINICAL RELEVANCE: Meloxicam caused no adverse effects on renal function when given to healthy dogs anaesthetized and rendered hypotensive with acepromazine, thiopental and isoflurane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号