首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   10篇
  国内免费   2篇
综合类   1篇
畜牧兽医   63篇
  2023年   1篇
  2022年   2篇
  2021年   5篇
  2020年   5篇
  2019年   3篇
  2018年   4篇
  2017年   4篇
  2016年   2篇
  2015年   7篇
  2014年   6篇
  2013年   5篇
  2012年   3篇
  2011年   3篇
  2010年   4篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2005年   2篇
  2001年   3篇
  2000年   1篇
排序方式: 共有64条查询结果,搜索用时 109 毫秒
1.
2.
ObjectiveTo compare ketamine–butorphanol–medetomidine (KBM) with butorphanol–midazolam–medetomidine (BMM) immobilization of serval.Study designBlinded, randomized trial.AnimalsA total of 23 captures [KBM: five females, six males; 10.7 kg (mean); BMM: 10 females, two males; 9.6 kg].MethodsServal were cage trapped and immobilized using the assigned drug combination delivered via a blow dart into gluteal muscles. Prior to darting, a stress score was assigned (0: calm; to 3: markedly stressed). Drug combinations were dosed based on estimated body weights: 8.0, 0.4 and 0.08 mg kg–1 for KBM and 0.4, 0.3 and 0.08 mg kg–1 for BMM, respectively. Time to first handling, duration of anaesthesia and recovery times were recorded. Physiological variables including blood glucose and body temperature were recorded at 5 minute intervals. Atipamezole (5 mg mg–1 medetomidine) and naltrexone (2 mg mg–1 butorphanol) were administered intramuscularly prior to recovery. Data, presented as mean values, were analysed using general linear mixed model and Spearman’s correlation (stress score, glucose, temperature); significance was p < 0.05.ResultsDoses based on actual body weights were 8.7, 0.4 and 0.09 mg kg–1 for KBM and 0.5, 0.4 and 0.09 mg kg–1 for BMM, respectively. Time to first handling was 10.2 and 13.3 minutes for KBM and BMM, respectively (p = 0.033). Both combinations provided cardiovascular stability during anaesthesia that lasted a minimum of 35 minutes. Recovery was rapid and calm overall, but ataxia was noted in KBM. Stress score was strongly correlated to blood glucose (r2 = 0.788; p = 0.001) and temperature (r2 = 0.634; p = 0.015).Conclusions and clinical relevanceBoth combinations produced similar effective immobilization that was cardiovascularly stable in serval. Overall, BMM is recommended because it is fully antagonizable. A calm, quiet environment before drug administration is essential to avoid capture-induced hyperglycaemia and hyperthermia.  相似文献   
3.
ObjectiveTo compare the effect of propofol, alfaxalone and ketamine on intraocular pressure (IOP) in cats.Study designProspective, masked, randomized clinical trial.AnimalsA total of 43 ophthalmologically normal cats scheduled to undergo general anesthesia for various procedures.MethodsFollowing baseline IOP measurements using applanation tonometry, anesthesia was induced with propofol (n = 15), alfaxalone (n = 14) or ketamine (n = 14) administered intravenously to effect. Then, midazolam (0.3 mg kg?1) was administered intravenously and endotracheal intubation was performed without application of topical anesthesia. The IOP was measured following each intervention. Data was analyzed using one-way anova and repeated-measures mixed design with post hoc analysis. A p-value <0.05 was considered significant.ResultsMean ± standard error IOP at baseline was not different among groups (propofol, 18 ± 0.6; alfaxalone, 18 ± 0.7; ketamine, 17 ± 0.5 mmHg). Following induction of anesthesia, IOP increased significantly compared with baseline in the propofol (20 ± 0.7 mmHg), but not in the alfaxalone (19 ± 0.8 mmHg) or ketamine (16 ± 0.7 mmHg) groups. Midazolam administration resulted in significant decrease from the previous measurement in the alfaxalone group (16 ± 0.7 mmHg), but not in the propofol group (19 ± 0.7 mmHg) or the ketamine (16 ± 0.8 mmHg) group. A further decrease was measured after intubation in the alfaxalone group (15 ± 0.9 mmHg).Conclusions and clinical relevancePropofol should be used with caution in cats predisposed to perforation or glaucoma, as any increase in IOP should be avoided.  相似文献   
4.
Heart rate is a major factor influencing diagnostic image quality in computed tomographic coronary artery angiography (MDCT‐CA), with an ideal heart rate of 60–65 beats/min in humans. The purpose of this prospective study was to compare effects of two different clinically applicable anesthetic protocols on cardiovascular parameters and 64‐MDCT‐CA quality in 10 healthy dogs. Scan protocols and bolus volumes were standardized. Image evaluations were performed in random order by a board‐certified veterinary radiologist who was unaware of anesthetic protocols used. Heart rate during image acquisition did not differ between protocols (P = 1), with 80.6 ± 7.5 bpm for protocol A and 79.2 ± 14.2 bpm for protocol B. Mean blood pressure was significantly higher (P > 0.05) using protocol B (protocol A 62.9 ± 9.1 vs. protocol B 72.4 ± 15.9 mmHg). The R‐R intervals allowing for best depiction of individual coronary artery segments were found in the end diastolic period and varied between the 70% and 95% interval. Diagnostic quality was rated excellent, good, and moderate in the majority of the segments evaluated, with higher scores given for more proximal segments and lower for more distal segments, respectively. Blur was the most commonly observed artifact and mainly affected the distal segments. No significant differences were identified between the two protocols for optimal reconstruction interval, diagnostic quality and measured length individual segments, or proximal diameter of the coronary arteries (P = 1). Findings indicated that, when used with a standardized bolus volume, both of these anesthetic protocols yielded diagnostic quality coronary 64‐MDCT‐CA exams in healthy dogs.  相似文献   
5.
ObjectiveTo assess the sedative and immobilization effect of intranasal administration (INS) of midazolam (MID) without or with INS dexmedetomidine (DXM), and some physiological changes induced by the drugs. The ability of INS atipamezole to reverse the DXM component was also assessed.Study designProspective ‘blinded’ experimental study.AnimalsIn total, 15 pigeons.MethodsPigeons were sedated by INS MID alone at a dose of 5 mg kg−1 (group MID, n = 6) or in combination with INS DXM at a dose 80 μg kg−1 (group MID-DXM, n = 6). Measurements were made of heart rate (HR), respiratory rate (fR) and cloacal temperature (CT). The degree of sedation was assessed at 15 minutes prior to, immediately after, and at intervals until 100 minutes after drug administrations. Following MID-DXM, INS atipamezole (250 μg kg−1) was administered and the same indices measured 5 and 10 minutes later.ResultsMID had no effect on HR and fR, and although CT decreased, it remained within physiological range. MID-DXM caused significant falls in HR, fR and CT that persisted until the end of sedation. Atipamezole antagonized sedation and cardiorespiratory side effects of MID-DXM within 10 minutes of application. In addition, for MID compared to MID-DXM, the lowest sedation scores [10 (7–14) and 10.5 (5–14) versus 2 (1–4) and 2 (1–5)] were achieved in the 10th and 20th minute versus the 20th and 30th minute of the sedation, respectively.Conclusions and clinical relevanceMID alone, given INS had minimal side effects on vital functions but caused inadequate immobilization of pigeons for restraint in dorsal recumbency. MID-DXM caused an effective degree of immobilization from 20 to 30 minutes after administration, at which time birds tolerated postural changes without resistance. Atipamezole antagonized both side effects and sedation, but complete recovery had not occurred within 10 minutes after its application.  相似文献   
6.
ObjectiveTo compare physiological effects of sufentanil-midazolam with sevoflurane for surgical anaesthesia in medetomidine premedicated rabbits.Study designProspective, randomized controlled experimental study.AnimalsEighteen female Himalayan rabbits, weight 2.1 ± 0.1 kg.MethodsPremedication with 0.1 mg kg−1 medetomidine and 5 mg kg−1 carprofen subcutaneously, was followed by intravenous anaesthetic induction with sufentanil (2.3 μg mL−1) and midazolam (0.45 mg mL−1). After endotracheal intubation, anaesthesia was maintained with sufentanil-midazolam (n = 9) or sevoflurane (n = 9). Ovariohysterectomy was performed. Intermittent positive pressure ventilation was performed as required. Physiological variables were studied perioperatively. Group means of physiologic data were generated for different anaesthetic periods. Data were compared for changes from sedation, and between groups by anova. Post-operatively, 0.05 mg kg−1 buprenorphine was administered once and 5 mg kg−1 carprofen once daily for 2–3 days. Rabbits were examined and weighed daily until one week after surgery.ResultsSmooth induction of anaesthesia was achieved within 5 minutes. Sufentanil and midazolam doses were 0.5 μg kg−1 and 0.1 mg kg−1, during induction and 3.9 μg kg−1 hour−1 and 0.8 mg kg−1 hour−1 during surgery, respectively. End-tidal sevoflurane concentration was 2.1% during surgery. Assisted ventilation was required in nine rabbits receiving sufentanil-midazolam and four receiving sevoflurane. There were no differences between groups in physiologic data other than arterial carbon dioxide. In rabbits receiving sevoflurane, mean arterial pressure decreased pre-surgical intervention, heart rate increased 25% during and after surgery and body weight decreased 4% post-operatively. Post-operative problems sometimes resulted from catheterization of the ear artery.ConclusionSevoflurane and sufentanil-midazolam provided surgical anaesthesia of similar quality. Arterial blood pressure was sustained during sufentanil-midazolam anaesthesia and rabbits receiving sevoflurane lost body weight following ovariohysterectomy. Mechanical ventilation was required with both anaesthetic regimens.Clinical relevanceAnaesthesia with sufentanil-midazolam in medetomidine premedicated healthy rabbits is useful in the clinical and the research setting, as an alternative to sevoflurane.  相似文献   
7.
ObjectiveTo evaluate the effects of the co-administration of midazolam on the dose requirement for propofol anesthesia induction, heart rate (HR), systolic arterial pressure (SAP) and the incidence of excitement.Study designProspective, randomized, controlled and blinded clinical study, with owner consent.AnimalsSeventeen healthy, client owned dogs weighing 28 ± 18 kg and aged 4.9 ± 3.9 years old.MethodsDogs were sedated with acepromazine 0.025 mg kg?1 and morphine 0.25 mg kg?1 intramuscularly (IM), 30 minutes prior to induction of anesthesia. Patients were randomly allocated to receive midazolam (MP; 0.2 mg kg?1) or sterile normal saline (CP; 0.04 mL kg?1) intravenously (IV) over 15 seconds. Propofol was administered IV immediately following test drug and delivered at 3 mg kg?1 minute?1 until intubation was possible. Scoring of pre-induction sedation, ease of intubation, quality of induction, and presence or absence of excitement following co-induction agent, was recorded. HR, SAP and respiratory rate (fR) were obtained immediately prior to, immediately following, and 5 minutes following induction of anesthesia.ResultsThere were no significant differences between groups with regard to weight, age, gender, or sedation. Excitement occurred in 5/9 dogs following midazolam administration, with none noted in the control group. The dose of propofol administered to the midazolam group was significantly less than in the control group. Differences in HR were not significant between groups. SAP was significantly lower in the midazolam group compared with baseline values 5 minutes after its administration. However, values remained clinically acceptable.Conclusions and clinical relevanceThe co-administration of midazolam with propofol decreased the total dose of propofol needed for induction of anesthesia in sedated healthy dogs, caused some excitement and a clinically unimportant decrease in SAP.  相似文献   
8.
Objectives To assess a method for monitoring depth of anaesthesia using components of middle latency auditory evoked potential (AEP) waveforms during anaesthesia with fentanyl/fluanisone and midazolam. Study design Prospective observational study. Animals Five female Wistar rats weighing between 210 and 250 g. Methods Implanted electrodes were used to record AEPs in animals receiving five doses of anaesthetic. Recordings were made at 5 minutes post‐injection (deep anaesthesia; no pedal withdrawal response, PWR) and then at 25 minutes (light anaesthesia; strong PWR). Responses showed five characteristic peaks occurring at 11, 14, 23, 42 and 68 ms that were measured for latency of occurrence and peak amplitude. Results Auditory evoked potential peaks P14, N23 and P42 were increased significantly in latency with successive anaesthetic injections [avg. F(1,4) = 12.53, p < 0.001; avg. F(1,4) = 10.6, p < 0.001; avg. F(1,4) = 3.9, p = 0.02, respectively]. Peak N23 showed a significant reduction in latency during the 20 minute recovery period following both the first and second anaesthetic injections (t(3) = 7.52, p = 0.005; t(4) = 5.17, p = 0.007, respectively). Peak P42 occurred significantly earlier 20 minutes following the second anaesthetic injection (t(4) = 4.75, p = 0.009). The mean overall depth of anaesthesia assessed using PWR scores was significantly correlated with the mean latency of peak N23, such that as the strength of PWR increased, N23 occurred significantly earlier (r = ?0.99, p = 0.01). The amplitude difference between peaks N23 and P42 increased after the second and third drug administrations [avg. F(1,4) = 10.65, p = 0.031 and avg. F(1,4) = 11.24, p = 0.028, respectively]. Conclusion The characteristics of these peaks, and in particular latency of peak N23, may provide a useful tool for assessing depth of anaesthesia produced by this, and possibly other anaesthetic agents.  相似文献   
9.
Objective To examine the effect of dose and route of administration on the sedative‐hypnotic effects of midazolam. Design Prospective randomized controlled study Animals Six indigenous, African bred goats. Methods Pilot studies indicated that the optimum dose of midazolam for producing sedation was 0.6 mg kg?1 for intramuscular (IM) injection, while the optimum intravenous (IV) doses causing hypnosis without, and with loss of palpebral reflexes were 0.6 mg kg?1 and 1.2 mg kg?1, respectively. These doses and routes of administration were compared with a saline placebo in a randomized block design in the main experiment, and the sedative‐hypnotic effects evaluated according to pre‐determined scales. Results Intramuscular midazolam produced sedation with or without sternal recumbency in all animals with the peak effect occurring 20 minutes after administration. The scores for IM sedation with midazolam were significantly different (p < 0.05) from placebo. Intravenous midazolam at 0.6 mg kg?1 resulted in hypnosis, and at 1.2 mg kg?1 increased reflex suppression was observed. The maximum scores for hypnosis at both doses were obtained 5 minutes after IV injection. The mean (± SD) duration of lateral recumbency was 10.8 (± 3.8) minutes after IV midazolam (0.6 mg kg?1) compared to 20 (± 5.2) minutes after midazolam at 1.2 mg kg?1. Compared to baseline, the heart rate increased significantly (p < 0.05) after high dose IV midazolam. Conclusion Intramuscular midazolam (0.6 mg kg?1) produced maximum sedation 20 minutes after injection. Intravenous injection produced maximum hypnosis within 5 minutes. Increasing the IV dose from 0.6 to 1.2 mg kg?1 resulted in increased reflex suppression and duration of hypnosis. Clinical relevance For a profound effect with rapid onset midazolam should be given IV in doses between 0.6 and 1.2 mg kg?1.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号