首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   564篇
  免费   2篇
  国内免费   2篇
林业   290篇
基础科学   7篇
  86篇
综合类   112篇
农作物   4篇
水产渔业   1篇
畜牧兽医   14篇
园艺   42篇
植物保护   12篇
  2023年   1篇
  2022年   1篇
  2021年   12篇
  2020年   1篇
  2019年   8篇
  2018年   5篇
  2017年   3篇
  2016年   9篇
  2015年   6篇
  2014年   17篇
  2013年   10篇
  2012年   10篇
  2011年   60篇
  2010年   34篇
  2009年   66篇
  2008年   68篇
  2007年   36篇
  2006年   27篇
  2005年   20篇
  2004年   19篇
  2003年   22篇
  2002年   28篇
  2001年   17篇
  2000年   9篇
  1999年   17篇
  1998年   8篇
  1997年   10篇
  1996年   6篇
  1995年   8篇
  1994年   5篇
  1993年   6篇
  1992年   5篇
  1991年   5篇
  1990年   5篇
  1988年   3篇
  1986年   1篇
排序方式: 共有568条查询结果,搜索用时 290 毫秒
1.
Agee  James K. 《Landscape Ecology》2003,18(8):725-740
The historical range of variability (HRV) has been suggested as a coarse filter approach to maintain ecosystem sustainability and resiliency. The historical range of variability in forest age structure for the central eastern Cascade Range in Washington State, USA was developed from historical fire return intervals and the manner in which fire acted as both cyclic and stochastic processes. The proportions of seven forest structural stages calculated through these processes were applied to the area of each forest series within the central eastern Cascades landscape. Early successional forest stages were more common in high elevation forest than low elevation forest. The historical proportion of old growth and late successional forest varied from 38 to 63 percent of the forested landscape. These process-based estimates are consistent with those developed from forest structural information. HRV is a valuable planning tool for ecosystem conservation purposes, but must be applied to real landscapes with consideration of both temporal and spatial scale. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
2.
Based on recent needs to accurately understand fire regimes and post-fire vegetation resilience at a supra-level for carbon cycle studies, this article focusses on the coupled history of fire and vegetation pattern for 40 years on a fire-prone area in central Corsica (France). This area has been submitted since the beginning of the 20th century to land abandonment and the remaining land management has been largely controlled by frequent fires. Our objectives were to rebuild vegetation and fire maps in order to determine the factors which have driven the spatial and temporal distribution of fires on the area, what were the feed backs on the vegetation dynamics, and the long-term consequences of this inter-relationship. The results show a stable but high frequency of small fires, coupled with forest expansion over the study period. The results particularly illustrate the spatial distribution of fires according to topography and vegetation, leading to a strong contrast between areas never burnt and areas which have been burnt up to 7 times. Fires, when occuring, affect on average 9 to 12% of the S, SE and SW facing slopes (compared to only 2 to 5% for the N facing slopes), spread recurrently over ridge tops, affect all the vegetation types but reburn preferentially shrublands and grasslands. As these fire-proning parameters have also been shown to decrease the regeneration capacity of forests, this study highlights the needs in spatial studies (both in terms of fire spread and vegetation dynamic) to accurately apprehend vegetation dynamic and functionning in fire-prone areas.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   
3.
梨火疫细菌实时荧光PCR和诱捕PCR-ELISA检测方法的建立   总被引:8,自引:1,他引:8  
根据梨火疫细菌中独特而保守存在的质粒pEA29,设计了1对引物和3条探针,建立了实时荧光PCR检测方法和诱捕PCR-ELISA检测方法。实时荧光PCR采用带荧光标记的核酸杂交探针,边扩增边检测,步骤简单,不需PCR后处理,可避免假阳性和交叉污染;诱捕PCR-ELISA检测方法只需简单处理的样品就能检测,减少了核酸不纯出现的漏检,由于增加了核酸杂交探针,可不需凝胶电泳EB染色检测,不会出现假阳性问题。  相似文献   
4.
Fire has historically been an important ecological factor maintaining southeastern U.S. vegetation. Humans have altered natural fire regimes by fragmenting fuels, introducing exotic species, and suppressing fires. Little is known about how these alterations specifically affect spatial fire extent and pattern. We applied historic (1920 and 1943) and current (1990) GIS fuels maps and the FARSITE fire spread model to quantify the differences between historic and current fire spread distributions. We held all fire modeling variables (wind speed and direction, cloud cover, precipitation, humidity, air temperature, fuel moistures, ignition source and location) constant with exception of the fuel models representing different time periods. Model simulations suggest that fires during the early 1900's burned freely across the landscape, while current fires are much smaller, restricted by anthropogenic influences. Fire extent declined linearly with patch density, and there was a quadratic relationship between fire extent and percent landscape covered by anthropogenic features. We found that as little as 10 percent anthropogenic landcover caused a 50 percent decline in fire extent. Most landscapes (conservation or non-conservation areas) are now influenced by anthropogenic features which disrupt spatial fire behavior disproportionately to their actual size. These results suggest that land managers using fire to restore or maintain natural ecosystem function in pyrogenic systems will have to compensate for anthropogenic influences in their burn planning. This revised version was published online in May 2005 with corrections to the Cover Date. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
5.
The Pocono mesic till barrens (PMTB) are a unique assemblage of fire-maintained shrub communities that support numerous rare species. Historically these barrens covered a large area in the vicinity of Long Pond, Pennsylvania, USA. However, due largely to regional fire suppression instituted in the early 1960s, over 70% of the area covered by barrens succeeded to fire-intolerant forest that does not support the rare species. We investigated the influence of forest proximity on barrens succession across three geomorphic types during periods of high fire frequency and fire suppression, testing the hypothesis that forest processes such as seed rain, shading, and detrital enrichment of soils enhances barrens succession through a contagion effect. Evidence of a forest contagion effect should be shown by increased rates of barrens succession with increasing proximity to the nearest forest edge. In order to detect a forest contagion effect, barrens persistence and barrens succession were modeled in proximity zones of 0-50 m, 50-100 m, 100-200 m, and greater than 200 m from the nearest forest edge. We used existing GIS data layers for fire, geomorphology, and vegetation distribution in 1938, 1963, and 1992. The layers were modified and overlain using ArcView software to determine persistence and succession rates for each unique combination of layers in each proximity zone from 1938 to 1963 (pre-fire suppression) and 1963 to 1992 (post-fire suppression). ANCOVA results indicate that proximity to the nearest forest edge significantly affected barrens persistence rates in both time periods, but succession rates were significantly affected in 1938 to 1963 only. Twenty-eight percent of the 1938 barrens succeeded to forest by 1963; 56% of the 1963 barrens became forest by 1992. Results support previous findings that barrens persistence is enhanced by increased fire frequency, and that barrens persist longer where they overlie flat glacial till than on other geomorphology types.  相似文献   
6.
We studied the relationships of landscape ecosystems to historical and contemporary fire regimes across 4.3 million hectares in northern lower Michigan (USA). Changes in fire regimes were documented by comparing historical fire rotations in different landscape ecosystems to those occurring between 1985 and 2000. Previously published data and a synthesis of the literature were used to identify six forest-replacement fire regime categories with fire rotations ranging from very short (<100 years) to very long (>1,000 years). We derived spatially-explicit estimates of the susceptibility of landscape ecosystems to fire disturbance using Landtype Association maps as initial units of investigation. Each Landtype Association polygon was assigned to a fire regime category based on associations of ecological factors known to influence fire regimes. Spatial statistics were used to interpolate fire points recorded by the General Land Office. Historical fire rotations were determined by calculating the area burned for each category of fire regime and dividing this area by fifteen (years) to estimate area burned per annum. Modern fire rotations were estimated using data on fire location and size obtained from federal and state agencies. Landtype Associations networked into fire regime categories exhibited differences in both historical and modern fire rotations. Historical rotations varied by 23-fold across all fire rotation categories, and modern forest fire rotations by 13-fold. Modern fire rotations were an order of magnitude longer than historical rotations. The magnitude of these changes has important implications for forest health and understanding of ecological processes in most of the fire rotation categories that we identified.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   
7.
In West African savanna-woodland, the use of prescribed burning as a management tool has ecological implications for the soil biota. Yet, the effects of fire on soil inhabiting organisms are poorly understood. The aim of this study was to examine the responses of soil macro-invertebrates to early fires in a Sudanian savanna-woodland on a set of experimental plots subject to different fuel load treatments. The abundance of major macro-invertebrate taxa and functional groups, and taxon richness were quantified in soil cores collected from three different soil layers before and immediately after burning. The results indicated that, overall, there was substantial spatial and temporal variation in the composition of macro-invertebrate assemblages. The immediate effects of fire were to reduce total invertebrate numbers and numbers of many invertebrate groups dramatically. This is probably due to the fact that many of the surface-dwelling macrofauna perished as a result of less favorable microclimate due to fire, diminished resources, or migrate to safer environments. Fuel load treatment did not affect the community taxonomic richness or abundance of the soil-dwelling fauna. Furthermore, annual changes in community composition were more pronounced at the burnt site than in the control. This could be related to the inter-annual difference in precipitation pattern recorded during the two-year study period at our site. Since soil macrofauna population declines in fire-disturbed areas, increasing fire prevalence may jeopardize the long-term conservation of fire sensitive macrofauna groups. Special fire management attention is therefore recommended with due consideration to the type of burning and fuel properties to avoid the detrimental effects of intense fire affecting the resilience of savanna soil macrofauna species.  相似文献   
8.
常明 《草地学报》2021,29(6):1286-1293
为了解火烧对植物群落结构和植被恢复速度的影响,本研究以甘肃省皇城羊场亚高山草甸为研究对象,于2017年5月进行了火烧试验,并分别在2017,2018及2019年的5月(返青期)、7月(生长期)和9月(生长末期)测量了该区域火烧样地和原生样地的植被覆盖度、群落多样性和裸地百分比等指标。结果表明:2019年5月后火烧样地与原生样地间植物群落多样性指数(Margalef指数、Shannon-Wiener指数、Simpson指数和Pielou指数)间差异不显著;火烧后引起的植物结构变化是短暂的,并随着时间的推移逐渐减少甚至消失,恢复时间大约16个月左右;同时火烧改变了物种组成,其中在火烧样地中甘肃马先蒿(Pedicularis kansuensis)和锐果鸢尾(Iris goniocarpa)逐渐消失,而鳞叶龙胆(Gentiana squarrosa)和火绒草(Leontopodium leontopodioides)逐渐出现。本研究说明春季火烧对亚高山草甸植物组成和结构有一定的调节作用,可作为亚高山草甸管理的有效措施。  相似文献   
9.
火生态因子对草原的效应及有计划用火的研究   总被引:3,自引:0,他引:3  
火烧可以提高禾草类的生物量25—30%,可以快速地(当年)大幅度提高羊草种群的生物量达100%以上。火烧提高羊草的抽穗率,促进草群更新复壮。火烧可以有效地抑制针茅种群的增长,并改变群落中的种群分布格局,促进羊草种群形成均匀分布格局,扩大羊草种群在群落中的生态位。火烧对草原的总生产力不发生负效应,一次火烧的正效应可持续2—3年。基于以上的结果,我们认为锡林郭勒草原区中,东部含有羊草的草原群落,可在春季四月下旬进行火烧,将会取得良好的效果。  相似文献   
10.
Dividing regions into manageable landscape units presents special problems in landscape ecology and land management. Ideally, a landscape should be large enough to capture a broad range of vegetation, environmental and disturbance dynamics, but small enough to be useful for focused management objectives. The purpose of this study was to determine the optimal landscape size to summarize ecological processes for two large land areas in the southwestern United States. We used a vegetation and disturbance dynamics model, LANDSUMv4, to simulate a set of nine scenarios involving systematically varied topography, map resolution, and model parameterizations of fire size and fire frequency. Spatial input data were supplied by the LANDscape FIRE Management Planning System (LANDFIRE) prototype project, an effort that will provide comprehensive and scientifically credible mid-scale data to support the National Fire Plan. We analyzed output from 2,000 year simulations to determine the thresholds of landscape condition based on the variability of burned area and dominant vegetation coverage. Results show that optimal landscape extent using burned area variability is approximately 100 km2 depending on topography, map resolution, and model parameterization. Variability of dominant vegetation area is generally higher and the optimal landscape sizes are larger in comparison to those features determined from burned area. Using the LANDFIRE project as a case study, we determined landscape size and map resolution for a large mapping project, and showed that optimal landscape size depends upon geographical, ecological, and management context. This paper was written and prepared by U.S. Government employees on official time, and therefore is in the public domain and not subject to copyright. The use of trade or firm names in this paper is for reader information and does not imply endorsement by the U.S. Department of Agriculture of any product or service.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号