首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
  国内免费   1篇
农学   4篇
农作物   1篇
植物保护   2篇
  2023年   1篇
  2020年   3篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
2.
Genomic selection in tea plant (Camellia sinensis) breeding has the potential to accelerate efficiency of choosing parents with desirable traits at the seedling stage. The study evaluated different genome-enabled prediction models for black tea quality and drought tolerance traits in discovery and validation populations. The discovery population comprised of two segregating tea populations (TRFK St. 504 and TRFK St. 524) with 255 F1 progeny and 56 individual tea cultivars in validation population genotyped using 1,421 DArTseq markers. Twofold cross-validation was used for training the prediction models in the discovery population on eight different phenotypic traits. The best prediction models in the discovery population were consequently fitted to the validation population. Of all the four model-based prediction approaches, putative QTLs (Quantitative Trait Loci) + annotated proteins + KEGG (Kyoto Encyclopaedia of Genes and Genomes) pathway-based prediction approach showed more robustness. The findings have for the first time opened up a new avenue for future application of genomic selection in tea breeding.  相似文献   
3.
One of the most important diseases of barley (Hordeum vulgare) is powdery mildew, caused by Blumeria graminis f. sp. hordei. Spring barley line 173-1-2 was selected from a Moroccan landrace and revealed broad-spectrum resistance to powdery mildew. The objective of this study was to map and characterize the gene for seedling powdery mildew resistance in this line. After crossing with the susceptible cultivar ‘Manchuria’, genetic analysis of F2 and F3 families at the seedling stage revealed powdery mildew resistance in line 173-1-2 conditioned by a single recessive gene. Molecular analysis of non-segregating homozygous resistant and homozygous susceptible F2 plants conducted on the DArTseq platform (Diversity Arrays Technology Pty Ltd) identified significant markers which were converted to allele-specific PCR markers and tested among 94 F2 individuals. The new resistance gene was mapped on the long arm of chromosome 6H. No other powdery mildew recessive resistance gene has been located on 6H so far. Therefore, we concluded that the 173-1-2 barley line carries a novel recessive resistance gene designated as mlmr.  相似文献   
4.
Identification of hybrids for commercialization is crucial for sustainable maize production in sub-Saharan Africa (SSA). One hundred and ninety test crosses, 10 tester × tester crosses + 10 hybrid checks were evaluated across 11 environments, 2017 to 2019. Inheritance of grain yield under Striga infestation, optimal and across environments was influenced by additive genetic action, but there was greater influence of nonadditive gene action under drought stress conditions. Nine, seven and two inbreds had significant and positive general combining ability (GCA) effects for grain yield under Striga-infested, optimal and drought stress environments, respectively, and would contribute high grain yield to their progenies. Heterotic grouping methods based on specific and GCA, GCA effects of multiple traits and DArTseq markers classified the inbreds into five, three and two heterotic groups, respectively, across research conditions. The DArTseq markers method that classified the inbred lines into two major heterotic groups and was one of the most efficient methods should be adopted for practical purposes in maize breeding programmes in SSA. Hybrids TZEI 7 × TZdEI 352, TZEI 1238 × TZEI 7 and TZEI 1252 × TZEI 7 had outstanding grain yield under contrasting environments and should be tested on-farm for commercialization in SSA.  相似文献   
5.
A high‐resolution consensus linkage map of Triticum monococcum was assembled from two separate maps involving domesticated, feral and wild einkorn wheat accessions. The genotyping‐by‐sequencing (GBS) approach based on DArTseq markers yielded overstretched maps. Deleting all markers with missing data and then converting dubious singletons to missing data produced two maps of about 1,380 cM, close to the published genome size. The consensus map spanned 1,562 cM, had one bin mapped every 0.92 cM and showed only one gap > 10 cM. Chromosome length varied between 151 cM (chromosome 4) and 270 cM (chromosome 7). The consensus map was compared to other A‐genome maps, and the sequences of genetically mapped DArTseq were used to anchor contigs of the T. monococcum, T. urartu and T. aestivum draft genomes based on sequence homology to assess colinearity and to assign mapped markers to the seven chromosomes of the bread wheat A‐genome. Finally, an in silico functional characterization of the sequences was performed. This high‐resolution map will facilitate QTL and association analysis and assist the genome assembly of the einkorn genome.  相似文献   
6.
The socio-economic impact of Fusarium odoratissimum, which is colloquially called tropical race 4 (TR4), is escalating as this fungal pathogen spreads to new banana-growing areas. Hence, the development of simple, reliable and rapid detection technologies is indispensable for implementing quarantine measures. Here, a versatile loop-mediated isothermal amplification (LAMP) assay has been developed that is applicable under field and laboratory conditions. DNA markers unique to TR4 isolates were obtained by diversity arrays technology sequencing (DArTseq), a genotyping by sequencing technology that was conducted on 27 genotypes, comprising 24 previously reported vegetative compatibility groups (VCGs) and three TR4 isolates. The developed LAMP TR4 assay was successfully tested using 22 TR4 isolates and 45 non-target fungal and bacterial isolates, as well as on infected plants under greenhouse and field conditions. The detection limit was 1 pg µL−1 pure TR4 DNA or 102 copies plasmid-localized TR4 unique sequence (SeqA) per reaction, which was not affected by background DNA in complex samples. The LAMP TR4 assay offers a powerful tool for the routine and unambiguous identification of banana plants infected with TR4, contributing to advanced diagnosis in field situations and monitoring of fusarium wilt.  相似文献   
7.
从人工合成六倍体小麦SHW-L1改良后代中选育的5个春小麦新品系,在青海表现出比对照品种高原448更优的农艺性状和产量潜力,推测源于外源物种的野生不良性状被淘汰,保留在新品系中的外源染色体区段可能对遗传改良有贡献。为了了解源自人工合成小麦SHW-L1的外源染色体区段在这5个改良新品系中的分布,利用11 660个具有染色体位置信息的多态性DArTseq标记对这5个改良品系进行了外源染色体区段分析。结果表明,共检测到78个外源染色体区段,其中,65个为源于四倍体小麦的A和B基因组,13个为来自于节节麦的D基因组。24个源于四倍体小麦的外源染色体区段分布于3个以上的品系中,这些区段主要来自于A基因组,其中2A有8个,7A有4个,1A有3个,6A有3个。本研究材料来自于混合选择,不同品系共有的外源染色体区段可能含有对当前育种有价值的重要基因位点或基因簇,这样的区段将是下一步关注的重点。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号