首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   305篇
  免费   11篇
  国内免费   40篇
林业   35篇
农学   38篇
基础科学   38篇
  69篇
综合类   82篇
农作物   40篇
水产渔业   8篇
畜牧兽医   22篇
园艺   19篇
植物保护   5篇
  2024年   4篇
  2023年   7篇
  2022年   9篇
  2021年   8篇
  2020年   13篇
  2019年   6篇
  2018年   7篇
  2017年   12篇
  2016年   13篇
  2015年   20篇
  2014年   15篇
  2013年   15篇
  2012年   24篇
  2011年   32篇
  2010年   25篇
  2009年   32篇
  2008年   29篇
  2007年   29篇
  2006年   12篇
  2005年   6篇
  2004年   3篇
  2003年   9篇
  2002年   3篇
  2000年   2篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   4篇
  1994年   2篇
  1992年   3篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
排序方式: 共有356条查询结果,搜索用时 15 毫秒
1.
2.
秸杆覆盖保墒效果探讨   总被引:2,自引:0,他引:2  
本文以试验资料的计算结果为依据,研究了秸杆覆盖的保墒效果。研究结果表明,条带状秸杆覆盖在产量、单位面积耗水量以及水分利用率等方面,都比无覆盖和全覆盖优越,从而为生产部门的推广和应用提供了依据  相似文献   
3.
2022年夏季,长江流域遭遇了罕见的“汛期反枯”极端水文事件,在此期间,汉江中下游首次发现了蓝藻水华。本研究选取叶绿素a浓度作为衡量水华的关键指标,基于偏最小二乘回归(Partial least squares regression,PLSR)量化了不同环境因子对2022年夏季汉江中下游(仙桃、宗关断面)水华生消的贡献率。结果表明:(1)仙桃和宗关断面叶绿素a浓度与溶解氧、pH值和水温均呈现出显著的正相关关系。溶解氧、pH值和水温对2022年夏季汉江中下游水华生消的贡献程度最高,三者对仙桃和宗关断面水华生消的贡献率分别为15.18%、13.68%、14.50%和18.06%、15.93%、15.65%。(2)基于偏最小二乘路径模型(Partial Least Squares Path Modeling,PLS-PM),本研究进一步解析了各环境因子对叶绿素a浓度变化的影响路径。结果表明气象因子是2022年夏季汉江中下游蓝藻水华暴发的诱导因子,高温无雨的极端天气导致水温和pH上升,加速了藻类的代谢反应速率。同时,河道流量减小延长了有机物和营养盐的传输和滞留时间,为藻类生长提供了稳定的营养条件。并且水华“萌发”时段可能与汉江中下游“涝旱急转”时段重叠。因此,本文建议下一步研究应结合准确的中长期气象预报信息,在“涝旱急转”时段实时优化汉江中下游水华防控调度的下泄流量与下泄时机,这将有可能大大提高水华防控的效率和效果。  相似文献   
4.
Judging watermelon quality based on its apparent properties such as size or skin color is difficult. A non-destructive method is employed here, based on vibrational response spectrum, to determine the quality indices of watermelon (Charleston gray). The responses of samples to vibration excitation were recorded by laser Doppler vibrometry (LDV). The phase shift between input and output signals were extracted over a wide frequency range. The total soluble solids (TSS), titratable acidity (TA) and TSS/TA ratio also measured as watermelon quality characters. Stepwise multiple linear regression (SMLR) as well as partial least square regression (PLS) was applied to extracted vibration spectrums to construct prediction models of watermelon quality. The results showed that performance of SMLR models were better than PLS. The determination coefficients (R2) of SMLR validation models were 0.9976, 0.9985 and 0.9542 for TSS, TA and TSS/TA respectively. It is likely that reduction of cell wall materials to soluble solids during ripening process changes viscoelastic properties of watermelon reflected by vibrational response. This study demonstrated the feasibility of mentioned method for predicting the quality of watermelons in an industrial grading system.  相似文献   
5.
Hyper-spectral technology has been proven to be an effective method for the fast and non-destructive monitoring of crop biomass. However, the biomass estimation accuracy of this method is limited due to the effects of background factors, such as soils and water. In this study, a spectral separation method, non-negative matrix factorization (NMF), was proposed to alleviate the effects of soil on spectra. With the application of the NMF method, pure vegetation spectra were extracted from the field-observed spectra of wheat canopy, which were collected in four growing seasons from the tillering to the booting stages of wheat. Then, prediction models of wheat biomass (WB) were established and validated using the extracted spectra with the partial least squares regression (PLSR) method. The results showed that the NMF method could effectively separate the vegetation spectra from the mixed canopy spectra. Based on the extracted vegetation spectra, the WB prediction accuracy could be greatly improved with an increase of 31.7% for the R2p and an increase of 46.6% for the ratio of performance to deviation (RPD) as compared to the original spectra, indicating that the NMF method could significantly improve the performance of the WB prediction model. This method has potential application in the estimation of biomass using remote sensing technology.  相似文献   
6.
7.
喀斯特小流域土壤饱和导水率垂直分布特征   总被引:9,自引:1,他引:9  
土壤剖面饱和导水率(Saturated hydraulic conductivity,Ks)的垂直分布对土壤水文过程有极其重要的影响,但在地质背景特殊的喀斯特地区其研究还相对匮乏。通过测定典型喀斯特小流域内23个土壤剖面(0~10、10~20、20~30、30~50、50~70、70~100 cm)土壤Ks及土壤碎石含量(Rock fragment content,RC)、容重(Bulk density,BD)、毛管孔隙度(Capillary porosity,CP)、非毛管孔隙度(Non-capillary porosity,NCP)、土壤有机碳(Soil organic carbon,SOC)等土壤性质,并结合各样点的坡位(Slope position,SP)、坡度(Slope gradient,SG)、坡向(Slope aspect,SA)、裸岩率(Bare rock,BR)、土地利用类型(Land-use type,LU)等环境因素,应用偏相关分析和典范对应分析(CCA)的方法,研究了喀斯特小流域Ks的垂直分布特征及其主要影响因素。结果表明,Ks随土壤深度的增加而减小并可用对数函数模拟(R2=0.848)。20~100 cm各层Ks变幅较小且变异接近,因此在水文模型中可用20~30 cm土壤Ks代替深层。土壤性质中,RC与Ks的相关系数(0.484)最大。环境因素对Ks垂直分布的影响依次为SPSGSALUBR。由此可知,RC是影响Ks最重要的土壤性质,而SP则是影响Ks垂直分布最重要的环境因素。该结果有利于弄清喀斯特地区降雨入渗规律及其主要影响因素,为小流域植被恢复及水文模型的构建提供科学依据。  相似文献   
8.
We compared avian communities among three timber harvesting treatments in 45-m wide even-age riparian management zones (RMZs) placed between upland clearcuts and along one side of first- or second-order streams in northern Minnesota, USA. The RMZs had three treatments: (1) unharvested, (2) intermediate residual basal area (RBA) (targeted goal 11.5 m2/ha, realized 16.0 m2/ha), and (3) low RBA (targeted goal 5.7 m2/ha, realized 8.7 m2/ha). Surveys were conducted one year pre-harvest and three consecutive years post-harvest. There was no change in species richness, diversity, or total abundance associated with harvest but there were shifts in the types of birds within the community. In particular, White-throated Sparrows (Zonotrichia albicollis) and Chestnut-sided Warblers (Dendroica pensylvanica) increased while Ovenbirds (Seiurus aurocapilla) and Red-eyed Vireos (Vireo olivaceus) decreased. The decline of avian species associated with mature forest in the partially harvested treatments relative to controls indicates that maintaining an unharvested RMZ adjacent to an upland harvest may aid in maintaining avian species associated mature forest in Minnesota for at least three years post-harvest. However, our observations do not reflect reproductive success, which is an area for future research.  相似文献   
9.
Coastal rainforests of southeast Alaska have relatively simple species composition but complex structures with high diversity of tree ages, sizes and forest canopy layers, and an abundant understory plant community. Wildlife and fisheries resources also play an important role in the ecological functioning of forest and aquatic systems. Clearcutting has greatly altered these forest ecosystems with significant decreases in structural diversity of forest stands and greatly reduced wildlife habitat. This paper synthesizes information on management options in older forests that have never been actively managed, and in younger forests to increase diversity of stand structures and their associated effects on biodiversity. Light to moderate levels of partial cutting in old-growth forests can maintain the original diversity of overstory stand structures and understory plant communities. In younger forests that develop after clearcutting, mixed alder-conifer stands provide more heterogeneous structures and significantly higher understory biomass than in pure conifer forests. Research has shown that red alder increases diversity and abundance of understory plants, and provides forage for deer and small mammals. Results also show a clear linkage between alder and improved invertebrate diversity in aquatic systems. A combination of light partial cutting in older forests along with inclusion of red alder in conifer-dominated forests could provide the greatest amount of diversity and maintain the complex stand structures that are an important component of these forest ecosystems.  相似文献   
10.
This study was undertaken to investigate genotypic differences of five maize cultivars in grain yield response to two different modes of deficit irrigation, conventional deficit irrigation and partial root zone irrigation. Three irrigation treatments were implemented: (1) FULL irrigation, the control treatment where plant water requirement, 100% Class-A pan evaporation, was fully met and the furrows on both sides of the plant rows were irrigated; (2) partial root zone irrigation (PRI), 35% deficit irrigation, compared to FULL treatment, was applied in every other furrow thus irrigating only one side of the plant rows. The furrows irrigated were alternated every irrigation; (3) conventional deficit irrigation (CDI), the same amount of water as PRI was applied in furrows on both sides of the plant rows, similar to FULL irrigation treatment. Five maize cultivars (P.31.G.98, P.3394, Rx:9292, Tector and Tietar) showing extreme growth response to water stress were selected out of ten cultivars tested with earlier completed greenhouse-pot experiment. A split-plot experimental design, comprising three irrigation treatments and five maize cultivars with four replicates, was used during two years of work, in 2005 and 2006. Total of nine irrigations, with one-week irrigation interval, were annually applied using a drip-irrigation system. Soil water status was monitored using a neutron moisture gauge, in addition to measuring leaf water potential and above-ground biomass production throughout the growing season. Grain yield and other yield attributes were measured at harvest as well as assessing differences in plant root distributions. Decrease in grain yield and harvest index of the tested cultivars, compared to FULL treatment, was proportionally less under PRI than CDI. Whether or not a significant yield advantage can be obtained under PRI compared to CDI showed significant (P < 0.05) genotypic variability. Tector and Tietar among the tested cultivars of maize showed significantly higher grain yield (P < 0.05) under PRI than CDI. The yield advantage of the genotypes (P.3394 and Tector) under PRI compared to CDI seems related to their enhanced root biomass developed under PRI.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号