首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   4篇
  国内免费   1篇
综合类   4篇
水产渔业   11篇
  2021年   1篇
  2019年   3篇
  2018年   3篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2006年   1篇
  2003年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
To learn more about the movement patterns of bigeye tuna (Thunnus obesus), we deployed archival tags on 87 fish ranging in fork length from 50 to 154 cm. Thirteen fish were recaptured, from which 11 archival tags were returned, representing in aggregate 943 days‐at‐liberty. We successfully retrieved data from 10 tags, representing 474 days in aggregate. The largest fish recaptured was 44.5 kg [131 cm fork length (FL)] and the smallest 2.8 kg (52 cm). The deepest descent recorded was 817 m, the coldest temperature visited 4.7°C, and minimum oxygen level reached ~1 mL L?1. Fish spent little time at depths where water temperatures were below 7°C and oxygen levels less than ~2 mL L?1. Five fish were recaptured near the offshore weather buoy where they were tagged. Based on vertical movement patterns, it appeared that all stayed immediately associated with the buoy for up to 34 days. During this time they remained primarily in the uniform temperature surface layer (i.e. above 100 m). In contrast, fish not associated with a floating object showed the W‐shaped vertical movement patterns during the day characteristic of bigeye tuna (i.e. descending to ~300–500 m and then returning regularly to the surface layer). Four fish were tagged and subsequently recaptured near Cross Seamount up to 76 days later. These fish exhibited vertical movement patterns similar to, but less regular than, those of fish not associated with any structure. Bigeye tuna appear to follow the diel vertical movements of the deep sound scattering layer (SSL) organisms and thus to exploit them effectively as a prey resource. Average night‐time depth was correlated with lunar illumination, a behaviour which mimics movements of the SSL.  相似文献   
2.
This study reports on the movements of swordfish tagged within the Pacific Leatherback Conservation Area (PLCA), an expansive region (>500,000 km2) off the U.S. West Coast that has been seasonally restricted to drift‐gillnet fishing since 2001 to reduce leatherback sea turtle (Dermochelys coricea) interactions. Thirteen swordfish were outfitted with satellite‐linked archival tags scheduled for short (2–20 days, n = 11) and longer‐term (150 days, n = 2) data collection. All tags were deployed on basking swordfish using traditional harpoon‐based methods during the fall of 2012–2013, near offshore seamounts (35.6°N/122.9°W to 37.4°N/123.5°W). Depth and temperature data from 11 swordfish (~90 to 150 kg) resulted in <251 days of movement information from the PLCA region. All tagged individuals exhibited surface‐oriented nocturnal movements, spending >99% of the night above the average thermocline depth (37.5 m), with an average night depth of 8.3 ± 1.6 m. Daytime depth distribution was greater and more variable (mean 107.1 ± 21.2 m), with fish primarily displaying three behavioral patterns: (i) basking activity, 16.7% of the day, (ii) a mixed‐layer distribution between 3 m and the thermocline (26.8% of the day), and (iii) prolonged dives below the thermocline, 56.5% of the day. For seven of the tracks, daytime basking rates increased when thermocline depth was <37 m. As fish moved offshore, there was less variability in vertical movements with a reduction in both basking activity and mixed layer occupancy, as well as an increase in average daytime depth. These data are discussed with respect to the potential development of alternative fishery options for the PLCA.  相似文献   
3.
长江口外海域夏末温跃层与底层水低氧现象研究   总被引:4,自引:0,他引:4  
林军  闫庆  朱建荣  龚甫贤 《水产学报》2014,38(10):1747-1757
基于长江口外海域2009年夏末调查的温盐和溶解氧(DO)资料,采用垂向梯度法对夏末长江口外海域温度垂向结构类型进行划分,计算了温跃层深度、强度和温跃层处DO垂向梯度等参数。长江口外海域夏末水温垂向结构类型及其温跃层强度的分布表现为长江冲淡水、黄海沿岸流、台湾暖流表层暖水和台湾暖流深层冷水交汇、混合的态势。相关性分析表明,温跃层深度与温跃层处DO垂向梯度之间为负相关,温跃层深度与垂向最小DO浓度之间为正相关,温跃层强度与温跃层处DO垂向梯度之间为正相关。最接近DO供给源的上温跃层强度与温跃层处DO垂向梯度具有较强的相关性(r=0.69)。温跃层越浅、强度越大,对底层水低氧现象的影响越大。温跃层、特别是上温跃层引起的水体层化阻碍DO向底层输运,起到了物理隔氧的作用,与低氧现象具有紧密的联系,是低氧现象在长江口外海域从春末到秋季发生、发展、维持和消亡过程的重要环境控制因素。  相似文献   
4.
为研究气候变化对渔业资源的影响,采用2008—2017年全球海洋Argo网格数据集(BOA_Argo)和同期商业渔船渔捞日志数据,分析了拉尼娜和厄尔尼诺年中西太平洋黄鳍金枪鱼围网主要作业渔场温跃层的时空变化特征,结合GAM(generalized additive model)对影响黄鳍金枪鱼渔场的变量进行分析。结果表明,拉尼娜年,单位捕捞努力量渔获量(catch per unit effort, CPUE)随温跃层上界温度的高值区向西收缩而西移,最西至145°E;厄尔尼诺年,东移至165°E以东。拉尼娜年较正常年份,赤道太平洋东、西侧温跃层的上界深度差拉大,80~130 m上界深度值偏西。温跃层强度整体上呈现西弱东强,温跃层厚度以15°N和15°S为轴线,分别存在一个较厚的带状分布结构,CPUE分布在厚度值120~200 m之间。温跃层上界温度为27.5~29.5 ℃、强度为0.08~0.13 ℃·m-1时,CPUE分布密集,温跃层参数中上界温度对CPUE分布的影响最大。且厄尔尼诺年CPUE的东移和拉尼娜年CPUE的西移随渔场所在温跃层的最适参数值而移动。时间因子中年份对CPUE的影响是波动性的,拉尼娜年对CPUE的影响更密切。资源丰度较高海域在5°N—5°S,150°E—175°E。综上所述,异常气候导致的温跃层变化对于CPUE具有显著影响。  相似文献   
5.
Habitat occupancy patterns of lake trout (Salvelinus namaycush) and lake whitefish (Coregonus clupeaformis) in two large Canadian Shield lakes were modelled based on detections of fish from repeated depth‐stratified surveys over several summers. Lake trout and lake whitefish consistently occupied sites outside traditional thermal envelopes and were not detected at some sites within these ranges. This included the metalimnion and shallow epilimnion for lake trout and lake whitefish in Lake Opeongo. Physical habitat covariates were not important in defining lake trout habitat in both lakes. Physical habitat as represented by the hardness/softness gradient based on acoustic substrate surveys was important for lake whitefish in Lake Opeongo but not in Smoke Lake. In addition, thermal envelopes for lake whitefish differed between the lakes possibly because of differences in substrate slope. The wash zone of lakes, where the thermocline contacts the substrate, appears to be a physical habitat feature for lake whitefish in some lakes. Lake whitefish also exhibited diurnal activity behaviour that was reflected through greater detection rates in the morning versus the afternoon. By accounting for imperfect detection, true estimated overall occupancy of lake trout and lake whitefish increased 0.15–0.30 over naïve occupancy. Thermal habitat envelopes for lake trout and lake whitefish are wider than previously thought. Lake trout occupied a consistent thermal habitat envelope while lake whitefish varied between lakes likely because of lake specific differences in basin morphology and wash zone.  相似文献   
6.
As temperatures drop and fish metabolism slows, cyprinids are generally assumed to form dense, static shoals or migrate to suitable sites up tributaries to reduce predation risk. Using telemetry, common bream Abramis brama (L.) were observed to remain active and (presumably) foraged throughout winter in an area in the middle of an 8‐m‐deep valley reservoir coinciding with a 3–5 m zone of warmer, oxygenated water below an inverse thermocline. Tagged bream appeared to avoid cold, shallow zones (<1.5 m) at the inlet and banks and the deepest zone (5–8 m) near the dam/outlet, possibly due to poor food availability. Under certain conditions, bream populations showed higher levels of winter activity (and feeding) than previously assumed, with implications for both reservoir fisheries management and future studies assessing cyprinid behaviour, energy budgets and diet in lakes and reservoirs.  相似文献   
7.
Skipjack tuna (Katsuwonus pelamis) ranks third among marine resources that sustain global fisheries. This study delimits the spatiotemporal habitat of the species in the south‐western Atlantic Ocean, based on operational oceanography. We used generalized additive models (GAMs) and catch data from six pole‐and‐line fishing vessels operating during 2014 and 2015 fishing seasons to assess the effect of environmental variables on catch. We also analysed Modis sensor images of sea surface temperature (SST) and surface chlorophyll‐α concentration (SCC) to describe fishing ground characteristics in time and space. Catch was positively related to thermocline depth (24–45 m), SST (22–24.5°C), SCC (0.08–0.14 mg/m³) and salinity (34.9–35.8). Through SST images, we identified that thermal fronts were the main surface feature associated with a higher probability to find skipjack. Also, we state that skipjack fishery is tightly related to shelf break because bottom topography drives the position of fronts in this area. Ocean colour fronts and plankton enrichment were important proxies, accessible through SCC, used to delineate skipjack fishing grounds. Catch per unit effort (CPUE) was higher towards summer (median 14 t/fishing day) due to the oceanographic characteristics of the southern region. High productivity in this sector of the Brazilian coast defines the main skipjack feeding areas and, as a consequence, the greatest abundance and availability for fishing.  相似文献   
8.
利用2007—2016年Argo温度剖面浮标资料,计算西北太平洋柔鱼作业渔场垂直剖面海水温度和温跃层特征参数,并结合西北太平洋公海柔鱼(Ommastrephes bartramii)同期渔获数据,分析其中心渔场与垂直水温结构的季节性变化关系。结果表明:柔鱼渔汛期为每年的5—11月,其中8、9月是盛渔期,渔场位置相对集中,为150°E~160°E、39°N~45°N, CPUE超过2 t/(d·v);8月前和9月之后渔场相对分散,CPUE相对较低。渔场海洋温跃层上下界对应的海水温度,0~50 m和0~100 m水层温差具有明显的季节性变化。不同水层的水温温差从7月份开始逐步拉大,ΔT_(0-50 m)的平均温差达到了5.17℃,ΔT_(0-100 m)的温差为7.68℃;温差幅度最大值中ΔT_(0-50 m)出现在9月,为9.89℃;ΔT_(0-100 m)出现在9月,为12.64℃;10月和11月ΔT_(0-50 m)、ΔT_(0-100 m)逐步减小。在160°E以西海域,西部传统渔场海域温跃层上界深度处在20~50 m,对应海水温度范围在4~17℃;下界深度位于150~230 m,得出对应的温跃层下界的海水温度范围为3~11℃。渔场垂直水温结构ΔT_(0-50 m)、ΔT_(0-100 m)的值越大,CPUE越高,表明在温跃层水温降低幅度越大,柔鱼资源集聚密度越高,渔获量越好。对渔场垂直水温结构变化特征的研究为西北太平洋柔鱼的渔情预报和渔业生产提供了参考依据。  相似文献   
9.
The environmental processes associated with variability in the catch rates of bigeye tuna in the Atlantic Ocean are largely unexplored. This study used generalized additive models (GAMs) fitted to Taiwanese longline fishery data from 1990 to 2009 and investigated the association between environmental variables and catch rates to identify the processes influencing bigeye tuna distribution in the Atlantic Ocean. The present findings reveal that the year (temporal factor), latitude and longitude (spatial factors), and major regular longline target species of albacore catches are significant for the standardization of bigeye tuna catch rates in the Atlantic Ocean. The standardized catch rates and distribution of bigeye tuna were found to be related to environmental and climatic variation. The model selection processes showed that the selected GAMs explained 70% of the cumulative deviance in the entire Atlantic Ocean. Regarding environmental factors, the depth of the 20 degree isotherm (D20) substantially contributed to the explained deviance; other important factors were sea surface temperature (SST) and sea surface height deviation (SSHD). The potential fishing grounds were observed with SSTs of 22–28°C, a D20 shallower than 150 m and negative SSHDs in the Atlantic Ocean. The higher predicted catch rates were increased in the positive northern tropical Atlantic and negative North Atlantic Oscillation events with a higher SST and shallow D20, suggesting that climatic oscillations affect the population abundance and distribution of bigeye tuna.  相似文献   
10.
为了解大西洋延绳钓黄鳍金枪鱼(Thunnus albacares)渔场适宜的温跃层参数分布区间,采用Argo浮标水温信息和大西洋金枪鱼会委员(International Commission for the Conservation of Atlantic Tunas ICCAT)的黄鳍金枪鱼延绳钓渔获数据,绘制了大西洋中部月平均温跃层特征参数和月平均单位捕捞努力量渔获量(Catch per unit effort CPUE)的空间叠加图,用于分析大西洋中部延绳钓黄鳍金枪鱼中心渔场时空分布和温跃层特征参数关系。分析结果表明:大西洋中部温跃层上界深度、温度具有明显的季节性变化,而温跃层下界深度、温度没有明显的季节变化特征。空间叠加图显示,1-6月份在赤道地区中心渔场主要分布在温跃层上界深度为20-60 m之间。7-9月份在60-80 m,同期在纳米比亚外海,中心渔场区域温跃层上界深度超过100 m。10-12月份,中心渔场区域温跃层上界深度下降到60 m左右。全年在赤道区域,中心渔场CPUE主要分布在温跃层上界温度26-29 ℃,低于24℃区域渔获率很低;温跃层下界深度在160-250 m,集中在230 m;温跃层下界温度在12-14 ℃之间,在此区间外CPUE值都比较低。7-11月份,在纳米比亚外海的中心渔场区域上界温度会低至20 ℃,下界深度分布在140-160 m,下界温度在14-15 ℃左右。数值计算得出大西洋中部黄鳍金枪鱼适宜的温跃层上界温度是26-28.9 ℃;适宜的温跃层下界温度和深度分别是12-14.9 ℃和150-249 m,而上界深度和中心渔场CPUE关系不明显。研究得出大西洋延绳钓黄鳍金枪鱼中心渔场温跃层各特征参数的适宜分布区间及季节变化特征,为延绳钓黄鳍金枪鱼实际生产作业和资源管理提供理论参考。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号