首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Feasibility of SRI methods for reduction of irrigation and NPS pollution in Korea
Authors:Joong-Dae Choi  Woon-Ji Park  Ki-Wook Park  Kyong-Jae Lim
Institution:1. Department of Regional Infrastructures Engineering, Kangwon National University, Chuncheon, Korea
2. Research Group on Rural Community Development, Rural Research Institute, Ansan, Korea
Abstract:An experimental study on the System of Rice Intensification (SRI) methods was conducted to investigate the feasibility of using them to conserve irrigation water and reduce non-point source (NPS) pollution in Korea. Eight experimental runoff plots were prepared at an existing paddy field. Runoff and water quality were measured during the 2010 growing season in which a Japonica rice variety was cultivated. The irrigation water requirements of SRI methods and conventional (CT) plots were 243.2 and 547.3 mm, respectively, meaning that SRI methods could save 55.6% of irrigation water. Runoff from SRI methods plots decreased 5–15% compared with that from CT plots. Average NPS pollutant concentrations in runoff from SRI methods plots during rainfall-runoff events were SS 89.4 mg/L, CODCr 26.1 mg/L, CODMn 7.5 mg/L, BOD 2.0 mg/L, TN 4.2 mg/L, and TP 0.4 mg/L. Except for CODCr and TN, these concentrations were significantly lower than those from CT plots. Measured pollution loads from SRI methods plots were SS 874 kg/ha, CODCr 199.5 kg/ha, CODMn 47 kg/ha, BOD 13 kg/ha, TN 36.9 kg/ha, and TP 2.92 kg/ha. These were 15.8–44.1% lower than those from CT plots. Rice plants grew better and healthier in SRI methods plots than in CT plots. However, rice production from SRI methods plots ranged between 76 and 92% of that of CT plots because the planting density in SRI methods plots was too low. It was concluded that SRI methods could be successfully adopted in Korea and could help save a significant amount of irrigation requirement in paddies and reduce NPS pollution discharge.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号